Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo
Información de la revista
Vol. 14. Núm. 2.
Páginas 174-183 (Abril - Junio 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3446
Vol. 14. Núm. 2.
Páginas 174-183 (Abril - Junio 2017)
Open Access
Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo
Lázaro: a mobile robot with an arm developed to contact with the ground
Visitas
3446
Jesús M. Garcíaa,1,
Autor para correspondencia
jmgarcia@unet.edu.ve

Autor para correspondencia.
, Itza J. Medinaa, Jorge L. Martínezb, Alfonso García-Cerezob, Alonzo Linaresa, Cristian Porrasa
a Universidad Nacional Experimental del Táchira, Laboratorio de Prototipos, Av. Universidad, sector Paramillo, San Cristóbal, Venezuela
b Universidad de Málaga, Andalucía Tech, Dpto. de Ingeniería de Sistemas y Automática, C/ Doctor Ortíz Ramos, s/n, 29071, Málaga, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Este artículo tiene por objetivo describir a Lázaro, el cual es un pequeño robot móvil que posee un brazo diseñado especialmente para propiciar un punto adicional de contacto con el suelo que puede utilizarse para mejorar la estabilidad al vuelco y superar obstáculos. Específicamente, se aborda la descripción de la estructura mecánica así como los componentes electrónicos destinados a percepción, comunicación y control. Posteriormente, se revisan las características de funcionamiento de este robot, en cuanto a su cinemática, arquitectura de control, modos de operación e interface. Finalmente, se hace una descripción de algunas pruebas de funcionamiento.

Palabras clave:
Robots móviles
estabilidad al vuelco
control de movimiento
tele-operación
Abstract

This paper aims to describe Lázaro, which is a small mobile robot that has an arm designed especially to provide an additional contact point with the ground that can be used to improve the tipover stability and to overcome obstacles. Specifically, the description of the mechanical structure and electronic components for perception, communication and control is discussed. Subsequently, the operating characteristics of the robot are reviewed in terms of kinematics, control architecture, operating modes and interface. Finally, a description of some performance tests is presented.

Keywords:
Mobile robots
tipover stability
motion control
teleoperation
Referencias
[Barrientos et al., 1996]
A. Barrientos, L. Peñín, C. Balaguer, R. Aracil.
Fundamentos de robótica.
McGraw-Hill, (1996),
[Ben-tzvi et al., 2008]
Ben-tzvi, P., Goldenberg, A., & Zu, J., 2008. Design, simulations and optimization of a tracked mobile robot manipulator with hybrid locomotion and manipulation capabilities. In: IEEE International Conference on Robotics and Automation. Pasadena, USA. pp. 2307-2312.
[Ben-Tzvi et al., 2009]
P. Ben-Tzvi, S. Ito, A. Goldenberg.
A mobile robot with autonomous climbing and descending of stairs.
Robotica, 27 (2009), pp. 171-188
[Bluethmann et al., 2010]
Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., et al. (2010). An active suspension system for lunar crew mobility. In: IEEE Aerospace Conference. Big Sky, USA. pp. 1-9.
[Casper and Murphy, 2003]
J. Casper, R. Murphy.
Human – robot interactions during the robot-assisted urban search and rescue response at the World Trade Center.
IEEE Transactions on Systems, Man and Cybernetics, 33 (2003), pp. 367-385
[Chiu et al., 2005]
Chiu, Y., Shiroma, N., Igarashi, H., Sato, N., Inami, M., & Matsuno, F., 2005. Fuma: Environment information gathering wheeled rescue robot with one-DOF arm. In: IEEE International Workshop on Safety, Security and Rescue Robotics. Kobe, Japan. pp. 81-86.
[Choi et al., 2007]
Choi, K., Jeong, H., Hyun, K., Choi, H., & Kwak, Y., 2007. Obstacle negotiation for the rescue robot with variable single-tracked mechanism. In: IEEE/ASME international conference on Advanced intelligent mechatronics. Zurich, Switzerland. pp. 1-6.
[Cordes et al., 2011]
Cordes, F., Dettmann, A., & Kirchner, F., 2011. Locomotion modes for a hybrid wheeled-leg planetary rover. In: IEEE international conference on robotics and biomimetics. Phuket, Thailand. pp. 2586-2592.
[Feng et al., 2012]
Q. Feng, X. Wang, W. Zheng, Q. Qiu, K. Jiang.
New strawberry harvesting robot for elevated-trough culture.
International Journal of Agricultural and Biological Engineering, 5 (2012), pp. 1-8
[García et al., 2015a]
García, J.M., Martínez, J.L., Mandow, A., & García-Cerezo, A., 2015a. Steerability analysis on slopes of a mobile robot with a ground contact arm. In: 23rd Mediterranean Conference on Control and Automation. Torremolinos, Spain. pp. 267-272.
[García et al., 2015b]
J.M. García, I. Medina, A.G. Cerezo, A. Linares.
Improving the static stability of a mobile manipulator using its end effector in contact with the ground.
IEEE Latin American Transactions, 13 (2015), pp. 3228-3234
[García-Cerezo et al., 2007]
García-Cerezo, A., Mandow, A., Martínez, J.L., Gómez-de-Gabriel, J., Morales, J., Cruz, A., et al., 2007. Development of Alacrane: a mobile robotic assitance for exploration and rescue missions. In: IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy. pp. 1-6.
[Guarnieri et al., 2004]
Guarnieri, M., Debenest, P., Inoh, P., Fukushima, E., & Hirose, S., 2004. Development of Helios VII: an arm-equipped tracked vehicle for search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan. pp. 39-45.
[Guarnieri et al., 2009]
Guarnieri, M., Kurazume, R., Masuda, H., Inoh, T., Takita, K., Debenest, P., et al., 2009. Helios system: a team of tracked robots for special urban search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA. pp. 2795-2800.
[Guarnieri et al., 2008]
Guarnieri, M., Takao, I., Debenest, P., Takita, K., Fukushima, E., & Hirose, S., 2008. Helios IX tracked vehicle for urban search and rescue operations: mechanical design and first tests. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France. pp. 1612-1617.
[Hurel et al., 2013]
J. Hurel, A. Mandow, A. García-Cerezo.
Los sistemas de suspensión activa y semiactiva: una revisión.
Revista Iberoamericana de Automática e Informática Industrial, 10 (2013), pp. 121-132
[Iagnemma et al., 2003]
K. Iagnemma, A. Rzepniewski, S. Dubowsky, P. Schenker.
Control of robotic vehicles with actively articulated suspensions in rough terrain.
Autonomous Robots, 14 (2003), pp. 5-16
[Jardón et al., 2008]
A. Jardón, A. Giménez, R. Correal, S. Martinez, C. Balaguer.
Asibot: Robot portátil de asistencia a discapacitados. concepto, arquitectura de control y evaluación clínica.
Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 48-59
[Lindemann et al., 2006]
R. Lindemann, D. Bickler, B. Harrington, G. Ortiz, C. Voorhees.
Mars exploration rover mobility development.
IEEE Robotics & Automation Magazine, 13 (2006), pp. 19-26
[Mandow et al., 2007]
Mandow, A., Martínez, J.L., Morales, J., Blanco, J.L., García-Cerezo, A., & González, J., 2007. Experimental kinematics for wheeled skid-steer mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA. pp. 1222-1227.
[Matsuno and Tadokoro, 2004]
Matsuno, F., & Tadokoro, S., 2004. Rescue robots and systems in Japan. In: IEEE International Conference on Robotics and Biomimetics. Shenyang, China. pp. 12-20.
[Meghdari et al., 2006]
A. Meghdari, D. Naderi, S. Eslami.
Optimal stability of a redundant mobile manipulator via genetic algorithm.
Robotica, 24 (2006), pp. 739-743
[Moosavian et al., 2006]
Moosavian, S., Semsarilar, H., & Kalantari, A., 2006. Design and manufacturing of a mobile rescue robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. pp. 3982-3987.
[Morales et al., 2009]
Morales, J., Martínez, J.L., Mandow, A., Serón, J., García-Cerezo, A., & Pequeño-Boter, A., 2009. Center of gravity estimation and control for a field mobile robot with a heavy manipulator. In: IEEE International Conference on Mechatronics. Málaga, Spain. pp. 1-6.
[Ollero et al., 1994]
A. Ollero, A. Mandow, V. Muñoz, J. Gómez de Gabriel.
Control architecture for mobile robot operation and navigation.
Robotics & Computer- Integrated Manufacturing, 11 (1994), pp. 259-269
[Serón et al., 2014]
J. Serón, J.L. Martínez, A. Mandow, A.J. Reina, J. Morales, A. García-Cerezo.
Automation of the arm-aided climbing maneuver for tracked mobile manipulators.
IEEE Transactions on Industrial Electronics, 61 (2014), pp. 3638-3647
[Siegwart et al., 2002]
R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet.
Innovative design for wheeled locomotion in rough terrain.
Robotics and Autonomous Systems, 20 (2002), pp. 151-162
[Stein and Paul, 1994]
Stein, M., & Paul, R., 1994. Operator interaction, for time-delayed teleoperation, with a behavior-based controller. In: IEEE International Conference on Robotics and Automation. San Diego, USA. pp. 231-236.
[Suthakorn et al., 2009]
Suthakorn, J., Shah, S., Jantarajit, S., Onprasert, W., Saensupo, W., Saeung, S., et al., 2009. On the design and development of a rough terrain robot for rescue missions. In: IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand. pp. 1830-1835.
[Vuković and Miljković, 2009]
N. Vuković, Z. Miljković.
New hybrid control architecture for intelligent mobile robot navigation in a manufacturing environment.
Faculty of Mechanical Engineering Transactions, 37 (2009), pp. 9-18

www.unet.edu.ve

Opciones de artículo
Herramientas