x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2016

0,500
© Thomson Reuters, Journal Citation Reports, 2016

Indexada en:

SCIE /JCR, Scopus, ScienceDirect

Métricas

  • Factor de Impacto: 0,500(2016)
  • 5-años Factor de Impacto: 0,344
  • SCImago Journal Rank (SJR):0,212
  • Source Normalized Impact per Paper (SNIP):0,308

© Thomson Reuters, Journal Citation Reports, 2016

Revista Iberoamericana de Automática e Informática industrial 2017;14:174-83 - DOI: 10.1016/j.riai.2016.09.012
Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo
Lázaro: a mobile robot with an arm developed to contact with the ground
Jesús M. Garcíaa,1,, , Itza J. Medinaa, , Jorge L. Martínezb, , Alfonso García-Cerezob, , Alonzo Linaresa, Cristian Porrasa
a Universidad Nacional Experimental del Táchira, Laboratorio de Prototipos, Av. Universidad, sector Paramillo, San Cristóbal, Venezuela
b Universidad de Málaga, Andalucía Tech, Dpto. de Ingeniería de Sistemas y Automática, C/ Doctor Ortíz Ramos, s/n, 29071, Málaga, España
Resumen

Este artículo tiene por objetivo describir a Lázaro, el cual es un pequeño robot móvil que posee un brazo diseñado especialmente para propiciar un punto adicional de contacto con el suelo que puede utilizarse para mejorar la estabilidad al vuelco y superar obstáculos. Específicamente, se aborda la descripción de la estructura mecánica así como los componentes electrónicos destinados a percepción, comunicación y control. Posteriormente, se revisan las características de funcionamiento de este robot, en cuanto a su cinemática, arquitectura de control, modos de operación e interface. Finalmente, se hace una descripción de algunas pruebas de funcionamiento.

Abstract

This paper aims to describe Lázaro, which is a small mobile robot that has an arm designed especially to provide an additional contact point with the ground that can be used to improve the tipover stability and to overcome obstacles. Specifically, the description of the mechanical structure and electronic components for perception, communication and control is discussed. Subsequently, the operating characteristics of the robot are reviewed in terms of kinematics, control architecture, operating modes and interface. Finally, a description of some performance tests is presented.

Palabras clave
Robots móviles, estabilidad al vuelco, control de movimiento, tele-operación
Keywords
Mobile robots, tipover stability, motion control, teleoperation
Referencias
Barrientos et al., 1996
A. Barrientos,L. Peñín,C. Balaguer,R. Aracil
Fundamentos de robótica
McGraw-Hill, (1996)
Ben-tzvi et al., 2008
Ben-tzvi, P., Goldenberg, A., & Zu, J., 2008. Design, simulations and optimization of a tracked mobile robot manipulator with hybrid locomotion and manipulation capabilities. In: IEEE International Conference on Robotics and Automation. Pasadena, USA. pp. 2307-2312.
Ben-Tzvi et al., 2009
P. Ben-Tzvi,S. Ito,A. Goldenberg
A mobile robot with autonomous climbing and descending of stairs
Robotica, 27 (2009), pp. 171-188
Bluethmann et al., 2010
Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., et al. (2010). An active suspension system for lunar crew mobility. In: IEEE Aerospace Conference. Big Sky, USA. pp. 1-9.
Casper and Murphy, 2003
J. Casper,R. Murphy
Human – robot interactions during the robot-assisted urban search and rescue response at the World Trade Center
IEEE Transactions on Systems, Man and Cybernetics, 33 (2003), pp. 367-385
Chiu et al., 2005
Chiu, Y., Shiroma, N., Igarashi, H., Sato, N., Inami, M., & Matsuno, F., 2005. Fuma: Environment information gathering wheeled rescue robot with one-DOF arm. In: IEEE International Workshop on Safety, Security and Rescue Robotics. Kobe, Japan. pp. 81-86.
Choi et al., 2007
Choi, K., Jeong, H., Hyun, K., Choi, H., & Kwak, Y., 2007. Obstacle negotiation for the rescue robot with variable single-tracked mechanism. In: IEEE/ASME international conference on Advanced intelligent mechatronics. Zurich, Switzerland. pp. 1-6.
Cordes et al., 2011
Cordes, F., Dettmann, A., & Kirchner, F., 2011. Locomotion modes for a hybrid wheeled-leg planetary rover. In: IEEE international conference on robotics and biomimetics. Phuket, Thailand. pp. 2586-2592.
Feng et al., 2012
Q. Feng,X. Wang,W. Zheng,Q. Qiu,K. Jiang
New strawberry harvesting robot for elevated-trough culture
International Journal of Agricultural and Biological Engineering, 5 (2012), pp. 1-8
García et al., 2015a
García, J.M., Martínez, J.L., Mandow, A., & García-Cerezo, A., 2015a. Steerability analysis on slopes of a mobile robot with a ground contact arm. In: 23rd Mediterranean Conference on Control and Automation. Torremolinos, Spain. pp. 267-272.
García et al., 2015b
J.M. García,I. Medina,A.G. Cerezo,A. Linares
Improving the static stability of a mobile manipulator using its end effector in contact with the ground
IEEE Latin American Transactions, 13 (2015), pp. 3228-3234
García-Cerezo et al., 2007
García-Cerezo, A., Mandow, A., Martínez, J.L., Gómez-de-Gabriel, J., Morales, J., Cruz, A., et al., 2007. Development of Alacrane: a mobile robotic assitance for exploration and rescue missions. In: IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy. pp. 1-6.
Guarnieri et al., 2004
Guarnieri, M., Debenest, P., Inoh, P., Fukushima, E., & Hirose, S., 2004. Development of Helios VII: an arm-equipped tracked vehicle for search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan. pp. 39-45.
Guarnieri et al., 2009
Guarnieri, M., Kurazume, R., Masuda, H., Inoh, T., Takita, K., Debenest, P., et al., 2009. Helios system: a team of tracked robots for special urban search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA. pp. 2795-2800.
Guarnieri et al., 2008
Guarnieri, M., Takao, I., Debenest, P., Takita, K., Fukushima, E., & Hirose, S., 2008. Helios IX tracked vehicle for urban search and rescue operations: mechanical design and first tests. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France. pp. 1612-1617.
Hurel et al., 2013
J. Hurel,A. Mandow,A. García-Cerezo
Los sistemas de suspensión activa y semiactiva: una revisión
Revista Iberoamericana de Automática e Informática Industrial, 10 (2013), pp. 121-132
Iagnemma et al., 2003
K. Iagnemma,A. Rzepniewski,S. Dubowsky,P. Schenker
Control of robotic vehicles with actively articulated suspensions in rough terrain
Autonomous Robots, 14 (2003), pp. 5-16
Jardón et al., 2008
A. Jardón,A. Giménez,R. Correal,S. Martinez,C. Balaguer
Asibot: Robot portátil de asistencia a discapacitados. concepto, arquitectura de control y evaluación clínica
Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 48-59
Lindemann et al., 2006
R. Lindemann,D. Bickler,B. Harrington,G. Ortiz,C. Voorhees
Mars exploration rover mobility development
IEEE Robotics & Automation Magazine, 13 (2006), pp. 19-26 http://dx.doi.org/10.1109/RBME.2017.2686483
Mandow et al., 2007
Mandow, A., Martínez, J.L., Morales, J., Blanco, J.L., García-Cerezo, A., & González, J., 2007. Experimental kinematics for wheeled skid-steer mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA. pp. 1222-1227.
Matsuno and Tadokoro, 2004
Matsuno, F., & Tadokoro, S., 2004. Rescue robots and systems in Japan. In: IEEE International Conference on Robotics and Biomimetics. Shenyang, China. pp. 12-20.
Meghdari et al., 2006
A. Meghdari,D. Naderi,S. Eslami
Optimal stability of a redundant mobile manipulator via genetic algorithm
Robotica, 24 (2006), pp. 739-743
Moosavian et al., 2006
Moosavian, S., Semsarilar, H., & Kalantari, A., 2006. Design and manufacturing of a mobile rescue robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. pp. 3982-3987.
Morales et al., 2009
Morales, J., Martínez, J.L., Mandow, A., Serón, J., García-Cerezo, A., & Pequeño-Boter, A., 2009. Center of gravity estimation and control for a field mobile robot with a heavy manipulator. In: IEEE International Conference on Mechatronics. Málaga, Spain. pp. 1-6.
Ollero et al., 1994
A. Ollero,A. Mandow,V. Muñoz,J. Gómez de Gabriel
Control architecture for mobile robot operation and navigation
Robotics & Computer- Integrated Manufacturing, 11 (1994), pp. 259-269 http://dx.doi.org/10.1038/srep46280
Serón et al., 2014
J. Serón,J.L. Martínez,A. Mandow,A.J. Reina,J. Morales,A. García-Cerezo
Automation of the arm-aided climbing maneuver for tracked mobile manipulators
IEEE Transactions on Industrial Electronics, 61 (2014), pp. 3638-3647
Siegwart et al., 2002
R. Siegwart,P. Lamon,T. Estier,M. Lauria,R. Piguet
Innovative design for wheeled locomotion in rough terrain
Robotics and Autonomous Systems, 20 (2002), pp. 151-162
Stein and Paul, 1994
Stein, M., & Paul, R., 1994. Operator interaction, for time-delayed teleoperation, with a behavior-based controller. In: IEEE International Conference on Robotics and Automation. San Diego, USA. pp. 231-236.
Suthakorn et al., 2009
Suthakorn, J., Shah, S., Jantarajit, S., Onprasert, W., Saensupo, W., Saeung, S., et al., 2009. On the design and development of a rough terrain robot for rescue missions. In: IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand. pp. 1830-1835.
Vuković and Miljković, 2009
N. Vuković,Z. Miljković
New hybrid control architecture for intelligent mobile robot navigation in a manufacturing environment
Faculty of Mechanical Engineering Transactions, 37 (2009), pp. 9-18

www.unet.edu.ve

Autor para correspondencia. (Jesús M. García jmgarcia@unet.edu.ve)
Copyright © 2017