x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Solicitud de permisos - Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2016

0,500
© Thomson Reuters, Journal Citation Reports, 2016

Indexada en:

SCIE /JCR, Scopus, ScienceDirect

Métricas

  • Factor de Impacto: 0,500 (2016)
  • SCImago Journal Rank (SJR):0,212
  • Source Normalized Impact per Paper (SNIP):0,308

© Thomson Reuters, Journal Citation Reports, 2016

Revista Iberoamericana de Automática e Informática industrial 2017;14:163-73 - DOI: 10.1016/j.riai.2016.11.005
Sistema de Absorción de Vibraciones de amplio Espectro basado en un nuevo Muelle de Rigidez variable
Wide Frequency Vibration Absorber based on a new adjustable–Stiffness Leaf Spring
Angel G. Gonzalez-Rodrigueza,, Antonio Gonzalez-Rodriguezb, Jesus M. Chaconc, Fernando J. Castillod
a Departamento de Ingeniería Electrónica y Automática, Universidad de Jaén, 23071, Jaén, España
b Departamento de Mecánica Aplicada, Universidad de Castilla-La Mancha, 13071, Ciudad Real, España
c Instituto de Matemática Aplicada en Ciencia e Ingeniería (IMACI), Universidad de Castilla-La Mancha, 13071, Ciudad Real, España
d Escuela de Ingeniería Industrial, Universidad de Castilla-La Mancha, 45071, Toledo, España
Resumen

Este artículo presenta un sistema de absorción de vibraciones ajustable. Las vibraciones son absorbidas por una masa secundaria que se añade al sistema mediante un muelle de rigidez variable, que consta de dos pares de láminas elásticas trabajando en oposición. El amplio rango de valores de rigidez que presenta (entre 1kN m−1 y 16kN m−1) permite al sistema de absorción cancelar vibraciones en el rango de 1.43 – 5.73Hz. Ante vibraciones de frecuencia variable en este rango, un motor de corriente continua permite ajustar la rigidez de dicho muelle en función de la frecuencia para que la atenuación de la vibración sea máxima en todo momento. El sistema de absorción de vibraciones ha sido incluido en una bancada que modela un sistema de segundo orden, y se han desarrollado un conjunto de experimentos que muestran una buena concordancia con los resultados teóricos para excitaciones de baja magnitud. Sin embargo, al aumentar la magnitud de la excitación, la desviación respecto del comportamiento lineal impide aplicar escalabilidad y superposición.

Abstract

This paper presents an adaptive tuned vibration absorber. The vibrations are absorbed by a secondary mass that is attached to the system through a new adjustable-stiffness spring, which consists of two pairs of leaf springs working in opposition. Its wide range of stiffness values (between 1kN m/s and 16kN m/s) allows the absorber to cancel vibration in the range 1.43–5.73Hz. A DC motor allows the spring to adjust its stiffness such that the vibration attenuation is maximum for any frequency in the mentioned interval. The vibration absorber has been included in a test bench modelling a second order system, and a set of experiments have been conducted that show a good agreement to the theoretical results for low magnitude excitations. However, as the excitation magnitude increases, the deviation from the linear behaviour impedes applying scalability and addition.

Palabras clave
Rigidez variable, sistema de absorción de vibraciones, muelle no lineal, muelle de láminas, sistemas no lineales, modelado y simulación
Keywords
Adjustable-stiffness, vibration absorber, non-linear spring, leaf spring, non-linear systems, modelling and simulation
Referencias
Acar and Yilmaz, 2013
M. Acar,C. Yilmaz
Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism
Journal of Sound and Vibration, 332 (2013), pp. 231-245
Ashour and Nayfeh, 2003
O. Ashour,A. Nayfeh
Experimental and numerical analysis of a nonlinear vibration absorber for the control of plate vibrations
Journal of Vibration and Control, 1 (2003), pp. 209-234
Brennan, 2006
M.J. Brennan
Some recent developments in adaptive tuned vibration absorbers/neutralisers
Shock & Vibration, 13 (2006), pp. 531-543 http://dx.doi.org/10.1111/joic.12377
Davis and Lesieutre, 1995
C. Davis,G. Lesieutre
A modal strain energy approach to the prediction of resistively shunted piezoceramic damping
Journal of Sound and Vibration, 184 (1995), pp. 129-139
Franchek et al., 1996
M. Franchek,M. Ryan,R. Bernhard
Adaptive passive vibration control
Journal of Sound and Vibration, 189 (1996), pp. 565-585
Ginder et al., 2001
J.M. Ginder,W.F. Schlotter,M.E. Nichols
Magnetorheological elastomers in tunable vibration absorbers
Proc. SPIE 4331, Smart Structures and Materials: Damping and Isolation,
Gonzalez-Rodriguez et al., 2011
A. Gonzalez-Rodriguez,J. Chacon,A. Donoso,A. Gonzalez-Rodriguez
Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation. Mechanism and Machine Theory
, 46 (2011), pp. 1970-1979
Grappasonni et al., 2014
C. Grappasonni,G. Habib,T. Detroux,F. Wang,G. Kerschen,J. Jensen
Practical design of a nonlinear tuned vibration absorber
ISMA International Conference on Noise and Vibration Engineering,
Ham et al., 2009
R. Ham,T. Sugar,B. Vanderborght,K. Hollander,D. Lefeber
Compliant actuator designs
Robotics Automation Magazine, IEEE, 16 (September, 2009), pp. 81-94
Liu and Liu, 2006
J. Liu,K. Liu
A tunable electromagnetic vibration absorber: Characterization and application
Journal of Sound and Vibration, 295 (2006), pp. 708-724
Monroe and Shaw, 2013
R.J. Monroe,S.W. Shaw
Nonlinear transient dynamics of pendulum torsional vibration absorbers–part ii: Experimental results
Journal of Vibration and Acoustics, (Feb, 2013),
Nagaya et al., 1999
K. Nagaya,A. Kurusu,S. Ikai,Y. Shitani
Vibration control of a structure by using a tunable absorber and a optimal vibration absorber under autotuning control
Journal of Sound and Vibration, 228 (1999), pp. 773-792
Oueini and Nayfeh, 2000
S. Oueini,A. Nayfeh
Analysis and application of a nonlinear vibration absorber
Journal of Vibration and Control, (2000), pp. 999-1016
Patten et al., 1996
W. Patten,R. Sack,Q. He
Controlled semiactive hydraulic vibration absorber for bridges
Journal of Structural Engineering, 122 (1996), pp. 187-192
Rao, 2004
S.S. Rao
Mechanical Vibrations
4th edition, Pearson Prentice Hall, (2004)
Trimboli et al., 1994
M. Trimboli,R. Wimmel,E. Breitbach
Quasi–active approach to vibration isolation using magnetic springs
Proc. SPIE., 2193 (1994), pp. 73-83
Viguie and Kerschen, 2009
R. Viguie,G. Kerschen
Design procedure of a nonlinear vibration absorber using bifurcation analysis
Proceedings of the IMAC-XXVII,
Walsh and Lamancusa, 1992
P. Walsh,J. Lamancusa
A variable stiffness vibration absorber for minimization of transient vibrations
Journal of Sound and Vibration, 158 (1992), pp. 195-211
Waterman, 1988
Waterman, E.H., feb 1988. Vibration absorber with controllable resonance frequency. US Patent, patent 4 724 923.
Williams et al., 2002
K. Williams,G. Chiu,R. Bernhard
Adaptive-passive absorbers using shape-memory alloys
Journal of Sound and Vibration, 249 (2002), pp. 835-848
Zhu et al., 2013
B. Zhu,C. Rahn,C. Bakis
Fluidic flexible matrix composite vibration absorber for a cantilever beam
Journal of Vibration and Acoustics, 137. (2013),
NOTICE Undefined index: email (includes_ws/librerias/html/item.php[1239])
NOTICE Undefined index: email (includes_ws/librerias/html/item.php[1239])
Autor para correspondencia. (Angel G. Gonzalez-Rodriguez )
Copyright © 2017