metricas
covid
Buscar en
Gastroenterología y Hepatología
Toda la web
Inicio Gastroenterología y Hepatología Design and validation of an artificial intelligence system to detect the quality...
Información de la revista
Vol. 47. Núm. 5.
Páginas 481-490 (mayo 2024)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
178
Vol. 47. Núm. 5.
Páginas 481-490 (mayo 2024)
Original Article
Design and validation of an artificial intelligence system to detect the quality of colon cleansing before colonoscopy
Diseño y validación de un sistema de inteligencia artificial para detectar la calidad de la limpieza del colon previa a la realización de la colonoscopia
Visitas
178
Antonio Z. Gimeno-Garcíaa,,
Autor para correspondencia
agimenog@ull.edu.es

Corresponding author.
, Silvia Alayón-Mirandab,, Federica Benítez-Zafraa, Domingo Hernández-Negrína, David Nicolás-Péreza, Claudia Pérez Cabañasa, Rosa Delgadoa, Rocío del-Castilloa, Ana Romeroa, Zaida Adriána, Ana Cubasa, Yanira González-Méndeza, Alejandro Jiménezc, Marco A. Navarro-Dávilad, Manuel Hernández-Guerraa
a Gastroenterology Department, Hospital Universitario de Canarias, Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, Tenerife, Spain
b Department of Computer Science and Systems Engineering, Universidad de La Laguna, Tenerife, Spain
c Research Unit, Hospital Universitario de Canarias, Tenerife, Spain
d Pharmacy Department, Hospital Universitario de Canarias, Tenerife, Spain
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (4)
Mostrar másMostrar menos
Tablas (3)
Table 1. Confusion matrix of VGG16 detection versus expert classification when classifying the initial image dataset and second image dataset.
Table 2. Sensitivity, specificity, and positive and negative predictive values of VGG16 detection versus expert classification when classifying the first and second image datasets.
Table 3. Sensitivity, specificity, and positive and negative predictive values of VGG16 detection versus the Boston Bowel Preparation Scale (BBPS).
Mostrar másMostrar menos
Material adicional (3)
Abstract
Background and aims

Patients’ perception of their bowel cleansing quality may guide rescue cleansing strategies before colonoscopy. The main aim of this study was to train and validate a convolutional neural network (CNN) for classifying rectal effluent during bowel preparation intake as “adequate” or “inadequate” cleansing before colonoscopy.

Patients and methods

Patients referred for outpatient colonoscopy were asked to provide images of their rectal effluent during the bowel preparation process. The images were categorized as adequate or inadequate cleansing based on a predefined 4-picture quality scale. A total of 1203 images were collected from 660 patients. The initial dataset (799 images), was split into a training set (80%) and a validation set (20%). The second dataset (404 images) was used to develop a second test of the CNN accuracy. Afterward, CNN prediction was prospectively compared with the Boston Bowel Preparation Scale (BBPS) in 200 additional patients who provided a picture of their last rectal effluent.

Results

On the initial dataset, a global accuracy of 97.49%, a sensitivity of 98.17% and a specificity of 96.66% were obtained using the CNN model. On the second dataset, an accuracy of 95%, a sensitivity of 99.60% and a specificity of 87.41% were obtained. The results from the CNN model were significantly associated with those from the BBPS (P<0.001), and 77.78% of the patients with poor bowel preparation were correctly classified.

Conclusion

The designed CNN is capable of classifying “adequate cleansing” and “inadequate cleansing” images with high accuracy.

Keywords:
Bowel cleansing
Convolutional neural network
Artificial intelligence
Colonoscopy
Abbreviations:
CNN
BBPS
CRC
CADe
CADx
AI
DL
LRD
Resumen
Antecedentes y objetivos

La percepción de los pacientes sobre la calidad de su limpieza intestinal puede guiar las estrategias de limpieza de rescate antes de una colonoscopia. El objetivo principal de este estudio fue entrenar y validar una red neuronal convolucional (CNN) para clasificar el efluente rectal durante la preparación intestinal como «adecuado» o «inadecuado».

Pacientes y métodos

Pacientes no seleccionados proporcionaron imágenes del efluente rectal durante el proceso de preparación intestinal. Las imágenes fueron categorizadas como una limpieza adecuada o inadecuada según una escala de calidad de 4 imágenes predefinida. Se recopilaron un total de 1.203 imágenes de 660 pacientes. El conjunto de datos inicial (799 imágenes) se dividió en un conjunto de entrenamiento (80%) y un conjunto de validación (20%). Un segundo conjunto de datos (404 imágenes) se utilizó para evaluar la precisión de la CNN. Posteriormente, la predicción de la CNN se comparó prospectivamente con la escala de preparación colónica de Boston (BBPS) en 200 pacientes que proporcionaron una imagen de su último efluente rectal.

Resultados

En el conjunto de datos inicial, la precisión global fue del 97,49%, la sensibilidad del 98,17% y la especificidad del 96,66%. En el segundo conjunto de datos, se obtuvo una precisión del 95%, una sensibilidad del 99,60% y una especificidad del 87,41%. Los resultados del modelo de CNN se asociaron significativamente con la escala de preparación colónica de Boston (p<0,001), y el 77,78% de los pacientes con una preparación intestinal deficiente fueron clasificados correctamente.

Conclusión

La CNN diseñada es capaz de clasificar imágenes de «limpieza adecuada» y «limpieza inadecuada» con alta precisión.

Palabras clave:
limpieza de colon
Red neuronal convolucional
Inteligencia artificial
Colonoscopia

Artículo

Opciones para acceder a los textos completos de la publicación Gastroenterología y Hepatología
Suscriptor
Suscriptor de la revista

Si ya tiene sus datos de acceso, clique aquí.

Si olvidó su clave de acceso puede recuperarla clicando aquí y seleccionando la opción "He olvidado mi contraseña".
Suscribirse
Suscribirse a:

Gastroenterología y Hepatología

Comprar
Comprar acceso al artículo

Comprando el artículo el PDF del mismo podrá ser descargado

Precio 19,34 €

Comprar ahora
Contactar
Teléfono para suscripciones e incidencias
De lunes a viernes de 9h a 18h (GMT+1) excepto los meses de julio y agosto que será de 9 a 15h
Llamadas desde España
932 415 960
Llamadas desde fuera de España
+34 932 415 960
E-mail
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos