Regístrese
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Binocular vertical diplopia following chemical labyrinthectomy with gentamicin: ...
Journal Information
Vol. 31. Issue 7.
Pages 503-505 (September 2016)
Vol. 31. Issue 7.
Pages 503-505 (September 2016)
Letter to the Editor
DOI: 10.1016/j.nrleng.2014.12.011
Full text access
Binocular vertical diplopia following chemical labyrinthectomy with gentamicin: A case report and review of literature
Diplopía vertical binocular tras laberintectomía química con gentamicina. A propósito de un caso y revisión de la literatura
Visits
1000
M. León Ruiza,
Corresponding author
pistolpete271285@hotmail.com

Corresponding author.
, L. Izquierdo Estebana, A. Parra Santiagoa, J. Benito-Leónb,c,d, A.E. Nieto Altuzarrae,f, E. García-Albea Ristola,g
a Servicio de Neurología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
b Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain
c Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
d Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
e Departamento de Otorrinolaringología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
f Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
g Departamento de Medicina, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
This item has received
1000
Visits
Article information
Full Text
Bibliography
Download PDF
Statistics
Figures (1)
Tables (1)
Table 1. Causes of binocular vertical diplopia.
Full Text
Dear Editor:

Chemical labyrinthectomy with gentamicin (CLG) is a minimally-invasive outpatient procedure aiming to achieve high concentrations of the drug in the cochlea with very little systemic dissemination. It is a useful treatment alternative in those patients with Meniere disease (MD) who do not respond to conventional medical treatment. Although vestibular toxicity secondary to CLG is a known adverse effect, visual alterations are rare; there are only 3 published cases of binocular vertical diplopia (BVD) with skew deviation (SD) due to this treatment. We present the fourth case of this complication, a patient with MD who developed BVD after undergoing an initial session of CLG.

Our patient was a 79-year-old woman with a 2-year history of drug-resistant MD in the left ear. She had received an intratympanic gentamicin injection one week previously (30mg/mL; 0.5mL). Before receiving the second dose, she reported a 5-day history of gradually progressing symptoms of BVD. In view of the patient's symptoms, her otorhinolaryngologist ordered an urgent neuro-ophthalmologic assessment. The study of extraocular movements revealed right hypertropia with 3 prism dioptres in all eye positions (Fig. 1). All other tests (visual acuity, pupillary light reflex, confrontation visual field exam, saccades and smooth pursuit eye movements, Bielschowsky head-tilting test, Ishihara test, and fundus observation with slit-lamp) yielded normal results. The patient was taking her usual medication, and her vital signs, cognitive state, and clinical examination results were all normal. Despite the above, she was admitted to the neurology department due to possible CNS involvement. Analyses and a brain MRI study did not reveal any relevant results. She was finally discharged and instructed to continue with the treatment she had received during her hospital stay: alternating an eye patch every day and using prisms. After 8 weeks of follow-up by the neurology and ophthalmology departments, BVD disappeared, confirming the diagnosis of SD due to CLG.

Figure 1.

Ocular findings in our patient with her eyes in the primary position, before (A) and immediately after (B) intratympanic gentamicin injection. At baseline, eyes were in their neutral position. After CLG, the patient experienced upward deviation of the visual axis of the right eye, whereas the left eye remained unaltered; called hypertropia, this misalignment of the eyes is present in SD and eventually leads to BVD. Skew deviation is usually caused by supranuclear alterations in the brainstem or the cerebellum. It affects vertical vestibulo-ocular tracts or, at times, the vestibular nerve or vestibular terminal organ (organ of Corti). SD is usually comitant; when incomitant, it may mimic partial paralysis of the third or fourth cranial nerves. The cause is usually vascular ischaemia in the pons or the lateral medulla oblongata (Wallenberg syndrome), probably due to involvement of the vestibular nuclei or their projections. When damage is located in the inferior area of the pons (as in our patient), the ipsilateral eye is undermost (ipsiversive SD), whereas in the case of rostral lesions at the level of the pons, the undermost eye is the contralateral eye (contraversive SD).1–3

(0.06MB).

Binocular visual diplopia is a medical emergency that requires immediate neuro-ophthalmologic assessment. SD is considered one of the most frequent causes of BVD (Table 1) as well as the semiological manifestation of damage at the level of the cerebellum or brainstem. However, this clinical manifestation may also be observed in the immediate and late postoperative periods following surgery for unilateral peripheral vestibular disorders.1–5 In addition, MD is a chronic disorder of the inner ear that manifests with vertigo, tinnitus, ear fullness, and fluctuating hypoacusia. Today, CLG has replaced other invasive treatment options for MD. This treatment destroys the glycocalyx and stops endolymph production.4–8 Although numerous studies on CLG have been conducted, there is no consensus on dosing schedules. Weekly dosing plus follow-up hearing tests is an increasingly common approach. Although relatively safe, CLG is also associated with a number of complications, including instability, exacerbation of vertigo, and worsening of hearing impairment. There are also several published cases of ataxia accompanied by oscillopsia, which may be due to the CNS being unable to compensate fully for vestibular suppression secondary to CLG.4–9 SD, on the other hand, is a vertical misalignment of the eyes due to damage to prenuclear vestibular inputs to the ocular motor nuclei. The most recent hypotheses suggest that SD linked to CLG is caused by asymmetrical, unilateral damage to the utricle at the level of neural integration for vertical eye movements in the midbrain (those involving oculomotor neurons and the interstitial nucleus of Cajal).5,8,9 Delayed onset of SD after CLG is due to the pharmacodynamic properties of intracochlear gentamicin. After gentamicin is injected into the middle ear, the drug concentration in the inner ear peaks in about the first 16hours and gradually decreases during the following 16 to 24hours. Toxicity affecting vestibular ciliated cells is likely to accumulate during a similar period of time, and SD occurs when vestibular denervation reaches a critical level.6–8 Fortunately, this condition usually resolves within 6 to 8 weeks.8 Lastly, the recently developed video Head Impulse Test (vHIT) is a valuable complementary tool for identifying vestibular deficits and preventing iatrogenic effects.10,11 In conclusion, development of BVD secondary to CLG has previously been reported in 2 articles published in otorhinolaryngology journals,8,9 but never in a neurological journal. This entity is probably underdiagnosed. Our case shows that CLG may cause reversible BVD. This statement is supported by the Naranjo algorithm for adverse drug reactions: our patient scored 7 out of 13 points, which suggests that CLG was the most likely cause of BVD.12 Clinicians should therefore be on the lookout for this rare adverse drug reaction; it may resemble CNS damage and treating it requires an interdisciplinary approach. It is still to be determined if CLG has a more extensive biochemical effect on the CNS. Prospective studies describing more cases should be conducted for a better understanding of this entity.

Table 1.

Causes of binocular vertical diplopia.

Common causes 
Superior oblique palsy
Dysthyroid orbitopathy (muscle infiltration)
Myasthenia gravis
Skew deviation (brainstem, cerebellar, hydrocephalus) 
 
Less common causes 
Orbital inflammation (myositis, idiopathic orbital inflammatory syndrome [formerly known as ‘orbital pseudotumour’])
Orbital infiltration (lymphoma, metastases, amyloid)
Primary orbital tumour
Entrapment of the inferior rectus (blowout fracture)
Third nerve palsy
Superior division third nerve palsy
Atypical third nerve palsy (partial nuclear lesion)
Aberrant third nerve reinnervation
Brown syndrome (congenital, acquired)
Congenital extraocular muscle fibrosis or muscle absence
Double elevator palsy (monocular elevator deficiency); controversial in origin 
 
Other causes 
Chronic progressive external ophthalmoplegia
Miller Fisher syndrome
Botulism
Monocular supranuclear gaze palsy
Vertical nystagmus (oscillopsia)
Stiff person syndrome (associated with hypometric saccades and abduction deficits)
Superior oblique myokymia
Dissociated vertical deviation (divergence)
Wernicke encephalopathy
Vertical one-and-a-half syndrome 
Source: Daroff et al.,2 2012.
Conflicts of interest

The authors have no conflicts of interest to declare.

Acknowledgements

We would like to thank Drs. Victoria Galán Sánchez-Seco, José Tejeiro Martínez, Francisco Cabrera Valdivia, María Molina Sánchez, and María Henedina Torregrosa Martínez.

References
[1]
A. Palla, D. Straumann.
Neurological evaluation of acute vertical diplopia.
Schweiz Arch Neurol Psychiatr, 153 (2002), pp. 180-184
[2]
P.J. Lavin.
Neuro-ophthalmology: ocular motor system.
6th ed., pp. 589-633
[3]
A.M. Wong.
Understanding skew deviation and a new clinical test to differentiate it from trochlear nerve palsy.
[4]
S. Schmerber, G. Dumas, N. Morel, K. Chahine, A. Karkas.
Vestibular neurectomy vs. chemical labyrinthectomy in the treatment of disabling Menière's disease: a long-term comparative study.
Auris Nasus Larynx, 36 (2009), pp. 400-405
[5]
M.K. Cosetti, K. Tawfik, M. Fouladvand, J.T. Roland Jr., A.K. Lalwani.
Diplopia due to skew deviation following neurotologic procedures.
Otol Neurotol, 33 (2012), pp. 840-842
[6]
A.N. Salt, R.M. Gill, S.K. Plontke.
Dependence of hearing changes on the dose of intratympanically applied gentamicin: a meta-analysis using mathematical simulations of clinical drug delivery protocols.
Laryngoscope, 118 (2008), pp. 1793-1800
[7]
C. Herraiz, J. Miguel Aparicio, G. Plaza.
Intratympanic drug delivery for the treatment of inner ear diseases.
Acta Otorrinolaringol Esp, 61 (2010), pp. 225-232
[8]
D. Ng, M. Fouladvand, A.K. Lalwani.
Skew deviation after intratympanic gentamicin therapy.
Laryngoscope, 121 (2011), pp. 492-494
[9]
P. Santos-Gorjón, T. Collazo-Lorduy, E. Sánchez-Terradillos, J.L. Sánchez-Jara Sánchez, M.J. Velasco-García, G. Martín-Hernández.
Acute diplopia posterior to chemical laberinthectomy.
Rev Soc Otorrinolaringol Castilla León Cantab La Rioja, 3 (2012), pp. 83-94
[10]
H.G. MacDougall, K.P. Weber, L.A. McGarvie, G.M. Halmagyi, I.S. Curthoys.
The video head impulse test: diagnostic accuracy in peripheral vestibulopathy.
Neurology, 73 (2009), pp. 1134-1141
[11]
L.E. Walther, R. Huelse, K. Blättner, M.B. Bloching, A. Blödow.
Dynamic change of VOR and otolith function in intratympanic gentamicin treatment for ménière's disease: case report and review of the literature.
Case Rep Otolaryngol, 2013 (2013), pp. 168391
[12]
M.J. Doherty.
Algorithms for assessing the probability of an adverse drug reaction.
Respir Med CME, 2 (2009), pp. 63-67

Please cite this article as: León Ruiz M, Izquierdo Esteban L, Parra Santiago A, Benito-León J, Nieto Altuzarra AE, García-Albea Ristol E. Diplopía vertical binocular tras laberintectomía química con gentamicina. A propósito de un caso y revisión de la literatura. Neurología. 2016;31:503–505.

Copyright © 2014. Sociedad Española de Neurología
Article options
Tools
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

es en pt
Política de cookies Cookies policy Política de cookies
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here. Utilizamos cookies próprios e de terceiros para melhorar nossos serviços e mostrar publicidade relacionada às suas preferências, analisando seus hábitos de navegação. Se continuar a navegar, consideramos que aceita o seu uso. Você pode alterar a configuração ou obter mais informações aqui.