Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Robótica Submarina: Conceptos, Elementos, Modelado y Control
Información de la revista
Vol. 11. Núm. 1.
Páginas 3-19 (Enero - Marzo 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
5588
Vol. 11. Núm. 1.
Páginas 3-19 (Enero - Marzo 2014)
Open Access
Robótica Submarina: Conceptos, Elementos, Modelado y Control
Underwater Robotics: Concepts, Elements, Modeling and Control
Visitas
5588
Héctor A. Morenoa,b,
Autor para correspondencia
hector.moreno@itam.mx

Autor para correspondencia.
, Roque Saltarénb, Lisandro Puglisib, Isela Carrerab,c, Pedro Cárdenasb,d, César Álvareze
a Instituto Tecnológico Autónomo de México. Río Hondo No. 1 Col. Progreso Tizapán. 01080. México D.F., México
b Centro de Automática y Robótica, Universidad Politécnica de Madrid-CSIC. José Gutiérrez Abascal, 2. 28006. Madrid, España
c Tecnológico de Monterrey, ITESM-Campus Laguna. Paseo del Tecnológico, 751. 27250. Torreón, México
d Universidad Nacional de Colombia. Carrera 45 No. 26-28. Bogotá, Colombia
e Universidad del Zulia, Facultad de Ingenieŕıa. Av. 16 con C. 67. 4011. Maracaibo, Venezuela
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los robots submarinos han revolucionado la exploracio¿n del fondo marino. Por otro lado, estos robots han permitido realizar operaciones en aguas profundas sin la necesidad de enviar un veh¿ıculo tripulado por humanos. El futuro de esta tecnolog¿ıa es prometedor. El propo’ito de este documento es servir de primer contacto con este tema y va dirigido a estudiantes de postgrado, ingenieros e investigadores con intere’ en la robo¿tica submarina. Adema’, se reporta el estado actual de los diferentes aspectos que giran alrededor de esta a¿rea de la robo¿tica.

Palabras clave:
Robots Submarinos
Introducción
Componentes
Modelado
Control
Estado del Arte
Abstract

Underwater robots have considerably changed the exploration of deep sea. Even more, these robots allow performing opera- tions in remote subsea installations. The future of this techno- logy is promising. The purpose of this work is to provide an insight into the subject to postgraduate students, engineers and researchers interested in underwater robotics. Additionally, this work presents a survey of the different subjects that this branch of robotics include.

Keywords:
Underwater Robotics
Introduction
Components
Modeling
Control
State of the Art.
Referencias
[Acosta et al., 2008]
Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Un- derwater Vehicles. InTech, Ch. 1, pp. 1-19.
[Alvarez, 2008]
Alvarez, C., 2008. Concepcio¿n y desarrollo de un veh¿ıculo submarino robo¿tico de estructura paralela de geometr¿ıa variable. Ph.D. thesis, Univesidad Poli- tecnica de Madrid, Madrid, Espan¿a.
[Alvarez et al., 2009]
C. Alvarez, R. Saltaren, R. Aracil, C. Garc¿ıa.
Concepcio¿n, desarrollo y avances en el control de navegacio¿n de robots submarinos paralelos: el robot remo i.
Revista Iberoamericana de Automa¿tica e Informa¿tica industrial, 6 (2009), pp. 92-100
[Amat et al., 2006]
J. Amat, O. Escote, M. Frigola, X. anb Giralt, A. Hernansanz.
Milana: a lowcost glider used for building a map of barcelona sea bed.
Robotics and Automation in the Maritime Industries AUTOMAR, Madrid, (2006), pp. 295-304
[Anderson and Chabra, 2002]
J.M. Anderson, N.K. Chabra.
Maneuvering and stability performance of a robotic tuna.
Integrative and Comparative Biology, 42 (2002), pp. 118-126
[Antonelli, 2003]
G. Antonelli.
Underwater Robots: Motion and Force Control of Vehicle- Manipulator.
Springer-Verlag, (2003),
[Antonelli et al., 2008]
G. Antonelli, T.I. Fossen, D.R. Yoerger.
Underwater Robotics.
Springer Handbook of Robotics, pp. 987-1008
[Bachmayer et al., 2000]
R. Bachmayer, L. Whitcomb, M. Grosenbaugh.
An accurate four qua- drant nonlinear dynamical model for marine thrusters.
IEEE Journal of Oceanic Engineering, 25 (2000), pp. 146-159
[Boyer et al., 2009]
F. Boyer, D. Chablat, P. Lemoine, P. Wenger.
The eel-like robot. In:.
Proceedings of the ASME IDETC/CIE, (2009),
[Bradley et al., 2001]
A. Bradley, M. Feezor, H. Singh, F. Sorrell.
Power systems for auto- nomous underwater vehicles.
IEEE Journal of Oceanic Engineering, 26 (2001), pp. 526538
[Caffaz et al., 2010]
A. Caffaz, A. Caiti, G. Casalino, A. Turetta.
The hybrid glider/auv folaga.
Robotics Automation Magazine, IEEE, 17 (2010), pp. 31-44
[Cavallo et al., 2004]
E. Cavallo, R. Michelini, V. Filaretov.
Conceptual design of an auv equipped with a three degrees of freedom vectored thruster.
Journal of Inte- lligent and Robotic Systems, 39 (2004), pp. 365-391
[Chen et al., 1999]
I. Chen, H. Li, A. Cathala.
Design and simulation of amoebot a meta- morphic underwater vehicle.
In: Proceedengs of the International Conferen- ce of Robotics and Automation., (1999), pp. 90-95
[Davis et al., 2002]
Davis, Russ E.; Eriksen, C. C., Jones, C., 2002. Autonomous buoyancy-driven underwater gliders. The Technology and Applications of Autonomous Un- derwater Vehicles. G.Griffiths, ed., London, England.
[de la Cruz Garc¿ıa et al., 2012]
J.M. de la Cruz Garc¿ıa, J.A. Almansa, J.M.G. Sierra.
Automa¿tica marina: una revisio¿n desde el punto de vista del control.
Revista Iberoame- ricana de Automa¿tica e Informa¿tica Industrial, 9 (2012), pp. 205-218
[DeBitetto, 1995]
P. DeBitetto.
Fuzzy logic for depth control of unmanned undersea vehi- cles.
IEEE Journal of Oceanic Engineering, 20 (1995), pp. 242-248
[DeNovi et al., 2010]
G. DeNovi, C. Melchiorri, J. Garc¿ıa, P. Sanz, P. Ridao, G. Oliver.
A new approach for a reconfigurable autonomous underwater vehicle for intervention.
IEEE Aerospace and Electronic Systems Magazine, 25 (2010), pp. 32-36
[Desset et al., 2005]
Desset, S., Damus, R., Hover, F., Morash, J., Polidoro, V., 2005. Closer to deep underwater science with odyssey iv class hovering autonomous underwater vehicle (hauv). In: IEEE Oceans 2005 - Europe. Vol. 2. pp. 758-762.
[Dudek et al., 2007]
G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L.-A. Torres-Mendez, M. Jenkin, A. German, A. Hogue, A. Ripsman, J. Zacher, E. Milios, H. Liu, P. Zhang, M. Buehler, C. Georgiades.
Aqua: An amphi- bious autonomous robot.
Computer, 40 (2007), pp. 46-53
[Evans et al., 2003]
J. Evans, P. Redmond, C. Plakas, K. Hamilton, D. Lane.
Autonomous docking for intervention-auvs using sonar and video-based real-time 3d pose estimation., 4 (2003), pp. 2201-2210
[Fossen, 1991]
T. Fossen.
Nonlinear modeling and control of underwater vehicles.
Ph. D. thesis, Norwegian University of Science and Technology, (1991),
[Fossen, 2002]
T. Fossen.
Marine Control Systems. Guidance, Navigation.
and Control of Ships, Rigs and Underwater Vehicles. Marine, (2002),
[Fossen and Sagatun, 1991]
T. Fossen, S. Sagatun.
Adaptive control of nonlinear underwater robotic systems.
In: Proceedings of the IEEE International Conference on Robotics and Automation., (1991), pp. 1687-1695
[Goheen and Jeffery, 1990]
K. Goheen, R. Jeffery.
Multivariable self-tuning autopilots for autono- mous and remotely operated underwater vehicles.
IEEE Journal of Oceanic Engineering, 15 (1990), pp. 144-151
[Graver, 2005]
J. Graver.
Undewater gliders: Dynamics, control and design.
Ph. D. the- sis, Princeton University, (2005),
[Griffiths Davis et al., 2002]
Griffiths, G., Ed., Davis, R.E., Eriksen, C.C., Jones, C.P., 2002. Autono- mous buoyancy-driven underwater gliders. In: Technology and Applications of Autonomous Underwater Vehicles. Taylor and Francis, London, England.
[Guo et al., 2003]
J. Guo, F.-C. Chiu, C.-C. Huang.
Design of a sliding mode fuzzy con- troller for the guidance and control of an autonomous underwater vehicle.
Ocean Engineering, 30 (2003), pp. 2137-2155
[Guo and Huang, 1996]
J. Guo, S. Huang.
Adaptive control of nonlinear underwater robotic sys- tems.
In: Proceedings of the Symp. on Autonomous Underwater Vehicle Technology., (1996), pp. 285-289
[Healey and Lienard, 1993]
A. Healey, D. Lienard.
Multivariable sliding mode control for autono- mous diving and steering of unmanned underwater vehicles.
IEEE Journal of Oceanic Engineering, 18 (1993), pp. 327-339
[Innocenti and Campa, 1999]
M. Innocenti, G. Campa.
Robust control of underwater vehicles: Sliding mode vs. lmi synthesis.
In: LMI Synthesis,. American Controls Conference., (1999), pp. 3422-3426
[Iwasaki et al., 1987]
M. Iwasaki, J. Akizono, H. Takahashi, T. Umetani, T. Nemoto, O. Azakura, K. Asayama.
Development on aquatic walking robot for underwater inspection.
Report of the Port and Harbour Research Institute, 26 (1987), pp. 393-422
[Kim and Yourn, 2004]
E. Kim, Y. Yourn.
Design and dynamic analysis of fish robottuna.
In: Proceedings of the IEEE International Conference on Robotics and Auto- mation, New Orleans, USA., (2004), pp. 4887-4892
[Kinsey et al., 2011]
J. Kinsey, D. Yoerger, M. Jakuba, R. Camilli, C. Fisher, R. Christopher.
Assessing the deepwater horizon oil spill with the sentry autonomous underwater vehicle.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)., (2011), pp. 261-267
[Le Page and Holappa, 2000]
Y. Le Page, K. Holappa.
Simulation and control of an autonomous underwater vehicle equipped with a vectored thruster.
In: OCEANS 2000 MTS/IEEE Conference and Exhibition., 3 (2000), pp. 2129-2134
[Lin and Gilbert, 1991]
T. Lin, J. Gilbert.
Analyses of magnetohidrodynamic propulsion with sea water for underwater vehicles.
American Institute of Aeronautics and Astronautics, (1991),
[Low and Willy, 2005]
K.H. Low, A. Willy.
Development and initial investigation of ntu robo-tic fish with modular flexible fins.
In: Proceedings of the IEEE International Conference on Mechatronics and Automation., (2005), pp. 958-963
[Marani et al., 2009]
G. Marani, S.K. Choi, J. Yuh.
Underwater autonomous manipulation for intervention missions auvs.
Ocean Engineering, 36 (2009), pp. 15-23
[Morel and Leonessa, 2003]
Y. Morel, A. Leonessa.
Adaptive Nonlinear Tracking Control of an Un- deractuated Non-minimum Phase Model of a Marine Vehicle Using Ultima- te Boundedness.
In: 42nd IEEE Conference on Decision and Control, (2003),
[Moreno et al., 2011]
H.A. Moreno, L.J. Puglisi, R.J. Saltaren, I. Carrera.
Kinematic analy- sis of an underwater parallel robot.
In: OCEANS 2011 IEEE Spain., (2011), pp. 1-6
[Newman, 1977]
Newman, 1977. Marine Hidrodynamics.
[Nie et al., 1998]
J. Nie, J. Yuh, E. Kardash, T.I. Fossen.
On-board sensor-based adap- tive control of small uuvs in very shallow water.
In: Proc. of IFAC-Control applications in Marine Systems., (1998), pp. 201-206
[Paster, 1986]
D. Paster.
Importance of hydrodynamic considerations for underwater vehicle design.
OCEANS, 18 (1986), pp. 1413-1422
[Polsenberg et al., 2005]
A. Polsenberg, M. Milano, M. Gsell, K. Fischer.
Synthetic jet pro- pulsion for small underwater vehicles.
In: Proceedengs of the International Conference of Robotics and Automation., (2005), pp. 181-187
[Potter et al., 1998]
M. Potter, D. Wiggert, M. Hondzo.
Mecanica de Fluidos.
Pretince Hall, (1998),
[Powerflow, 2012]
Powerflow, 2012. Web page software package. Online:http://www.exa.com.
[Prats et al., 2012]
M. Prats, D. Ribas, N. Palomeras, J.C. Garcia, V. Nannen, S. Wirth, J.J. Fer-nandez, J.P. Beltran, R. Campos, P. Ridao, P.J. Sanz, G. Oliver, M. Carreras, N. Gracias, R. Marin, A. Ortiz.
January econfigu- rable AUV for intervention missions: A case study on underwater object recovery.
Journal of Intelligent Service Robotics, 5 (2012), pp. 19-31
[Ridao et al., 2000]
P.J. Ridao, Y. Batlle, J.K. Sugihara.
On auv control architecture.
In: Proceedings of the International Conference on Intelligent Robots and Systems., (2000), pp. 855-860
[Ross, 2006]
C. Ross.
A conceptual design of an underwater vehicle.
Ocean Enginee- ring, 33 (2006), pp. 2087-2104
[Rossi et al., 2011]
C. Rossi, J. Colorado, W. Coral, A. Barrientos.
Bending continuous structures with smas: a novel robotic fish design.
Bioinspiration & Biomi- metics, 6 (2011), pp. 045005
[Saltaren et al., 2007]
R. Saltaren, R. Aracil, C. Alvarez, E. Yime, J. Sabater.
sep Field and service applications - exploring deep sea by teleoperated robot - an under- water parallel robot with high navigation capabilities.
Robotics Automation Magazine, IEEE, 14 (2007), pp. 65-75
[Seaeye, 2012]
Seaeye, 2012. Web page Panther-XT. Onli- ne:http://www.seaeye.com/pantherxt.html.
[SNAME, 1950]
SNAME, 1950. Nomenclature for treating the motion of a submerged body th- rough a fluid. The Society of Naval Architects and Marine Engineers. Tech- nical and Research bulletin No. 1-5.
[Valavanis et al., 1997]
K. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru.
Control archi- tectures for autonomous underwater vehicles.
IEEE Control Systems, 17 (1997), pp. 48-64
[van de Ven et al., 2005]
P.W.J. van de Ven, C. Flanagan, D. Toal.
Aug Neural network control of underwater vehicles.
Eng. Appl. Artif. Intell., 18 (2005), pp. 533-547
[Wang et al., 2009]
W. Wang, R. Engelaar, X. Chen, J. Chase.
The state-of-art of underwa- ter vehicles - theories and applications.
Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions,
[Yime, 2008]
Yime, E., 2008. Modelo matema¿tico y control vectorial de robots submarinos de geometr¿ıa variable. Ph.D. thesis, Univesidad Politecnica de Madrid, Madrid, Espan¿a.
[Yoerger and Cooke, 1990]
D. Yoerger, J.J.S. Cooke.
The influence of thruster dynamics on un- derwater vehicle behavior and their incorporation into control system design.
IEEE Journal of Oceanic Engineering, 15 (1990), pp. 167-178
[Yoerger and Slotine, 1985]
D. Yoerger, J. Slotine.
Robust trajectory control of underwater vehicles.
IEEE Journal of Oceanic Engineering, 10 (1985), pp. 462-470
[Yuh, 1990]
J. Yuh.
A neural net controller for underwater robotic vehicles.
IEEE Journal of Oceanic Engineering, 15 (1990), pp. 161-166
[Yuh, 1994]
J. Yuh.
Learning control of underwater robotic vehicles.
IEEE Control System, 14 (1994), pp. 39-46
[Yuh, 2000]
J. Yuh.
January Design and control of autonomous underwater robots: A survey.
Auton. Robots, 8 (2000), pp. 7-24
[Yuh et al., 1999]
J. Yuh, J. Nie, C. Lee.
Experimental study on adaptive control of un- derwater robots.
In: Proceedings of the IEEE International Conference on Mechatronics and Automation., (1999), pp. 393-398
[Zhang et al., 2006]
Y. Zhang, J. Tian, D. Su, S. Wang.
Research on the hierarchical super- visory control of underwater glider.
In: Proceedigs of IROS 2006., (2006), pp. 5509-5513
Copyright © 2012. EA
Opciones de artículo
Herramientas