x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2016

0,500
© Thomson Reuters, Journal Citation Reports, 2016

Indexada en:

SCIE /JCR, Scopus, ScienceDirect

Métricas

  • Factor de Impacto: 0,500(2016)
  • 5-años Factor de Impacto: 0,344
  • SCImago Journal Rank (SJR):0,212
  • Source Normalized Impact per Paper (SNIP):0,308

© Thomson Reuters, Journal Citation Reports, 2016

Revista Iberoamericana de Automática e Informática industrial 2017;14:205-16 - DOI: 10.1016/j.riai.2017.02.002
Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles: el Bus I2C como Caso de Estudio
Experimental Platform for Studying Hardware Vulnerabilities on Mobile Robots: I2C Bus, a Case of Study
F. Gomez-Bravo, , J. Medina García, R. Jiménez Naharro, J.A. Gómez Galán, M. Sánchez Raya
Departamento de Ingeniería Electrónica de Sistemas Informáticos y Automática, Grupo de Sistemas Electrónicos y Mecatrónica. Universidad de Huelva. Escuela Técnica Superior de Ingeniería, Carretera de Palos-La Rábida s/n. 21071 Huelva
Resumen

Este artículo presenta una plataforma experimental para estudiar los efectos de las vulnerabilidades hardware de los robots móviles. La plataforma se ha diseñado de forma que los elementos hardware que intervienen en el proceso de navegación pueden ser monitorizados durante el funcionamiento del robot, y, si es el caso, su comportamiento puede ser alterado, simulando de esta forma una situación de fallo. El artículo muestra como caso particular de estudio la vulnerabilidad del Bus I2C cuando se producen anomalías en la señal de reloj. Se incluyen un conjunto de resultados experimentales que confirman el interés de las vulnerabilidades estudiadas y la aplicabilidad de la plataforma desarrollada.

Abstract

This paper presents an experimental platform for studying the effects of hardware vulnerabilities in mobile robots. The platform is designed so that the hardware, involved in the navigation process, can be monitored during the robot operation and, if desired, their behavior can be altered, allowing the simulation of a failure. The paper shows a particular case of study: the I2C Bus vulnerability when some anomalies appear in the clock signal. A set of experimental results confirm the interest of the studied vulnerabilities and the applicability of the developed platform.

Palabras clave
Robots móviles, vulnerabilidad hardware, FPGA, hardware configurable
Keywords
Mobile robot, hardware vulnerability, FPGA, configurable hardware
Referencias
Alkalai and Tai, 2006
Alkalai, L., CHAU, S.N., Tai, A.T., 2006. Fault-tolerant communication channel structures. U.S. Patent No 7,020,076.
Anderson and Kuhn, 1996
Anderson, R., Kuhn, M., 1996. Tamper Resistence a Cautionary Note”, 2nd USENIX Workshop on Electronic Commerce Proceeding, 1-11.
Arora et al., 2008
A. Arora,R. Telang,H. Xu
Optimal policy for software vulnerability disclosure
Management Science, 54 (2008), pp. 642-656
Ashenden, 1990
P.J. Ashenden
The VHDL cookbook. Department of Computer Science
University of Adelaide, (1990)
Basu and Redi, 2004
P. Basu,J. Redi
Movement control algorithms for realization of fault-tolerant ad hoc robot networks
Network, IEEE, 18 (2004), pp. 36-44
Brown, 1981
Brown, D.W., 1981. A state-machine synthesizer—SMS. In Proceedings of the 18th Design Automation Conference, 301-305.
Bruschi et al., 2005
D. Bruschi,L. Cavallaro,A. Lanzi
Replay Attack in TCG Specification and Solution. In Proceedings of the 21st Annual Computer Security Applications Conference
IEEE Computer Sociecity, (2005), pp. 127-137 http://dx.doi.org/10.1109/CSAC.2005.47
Cañas et al., 2014
N. Cañas,W. Hernández,G. González,O. Sergiyenko
Controladores multivariables para un vehículo autónomo terrestre: Comparación basada en la fiabilidad del software
Revista Iberoamericana de Automática e Informática Industrial RIAI, 11 (2014), pp. 179-190 http://dx.doi.org/10.1016/j.riai.2014.02.002
Chapman, 2006
Chapman, K., 2006. Initial Design for Spartan-3E Starter Kit (LCD Display Control). Xilinx Ltd 16th February.
Chen et al., 2012
C.Y. Chen,B.Y. Shih,C.H. Shih,W.C. Chou
RETRACTED: The development of autonomous low-cost biped mobile surveillance robot by intelligent bricks
Journal of Vibration and Control, 18 (2012), pp. 577-586
Carbone and Gomez-Barvo, 2015
G. Carbone,F. Gomez-Barvo
Motion and Operation Planning of Robotic Systems
Springer International Publishing, (2015) http://dx.doi.org/10.1007/978-3-319-14705-5
Cuesta et al., 2004
F. Cuesta,F. Gómez-Bravo,A. Ollero
Parking maneuvers of industrial-like electrical vehicles with and without trailer
Industrial Electronics, IEEE Transactions on, 51 (2004), pp. 257-269 http://dx.doi.org/10.1109/TIE.2004.824855
Ferruz et al., 2011
J. Ferruz,V.M. Vega,A. Ollero,V. Blanco
Reconfigurable control architecture for distributed systems in the HERO autonomous helicopter
Industrial Electronics, IEEE Transactions on, 58 (2011), pp. 5311-5318 http://dx.doi.org/10.1109/TIE.2010.2046003
Fukuhara et al., 2004
Fukuhara, R., Day, L., Luong, H.H., Rasmussen, R., & Chau, S.N., 2004. I2C bus protocol controller with fault tolerance. U.S. Patent No. 6,728,908. Washington, DC: U.S. Patent and Trademark Office.
Garcia-Cerezo et al., 2007
A. Garcia-Cerezo,A. Mandow,J.L. Martinez,J. Gómez-de-Gabriel,J. Morales,A. Cruz,J. Seron
Development of ALACRANE: A mobile robotic assistance for exploration and rescue missions. In Safety, Security and Rescue Robotics, 2007. SSRR 2007
IEEE International Workshop on, (2007), pp. 1-6 http://dx.doi.org/10.1109/SSRR.2007.4381269
Gomez-Bravo et al., 2015
F. Gomez-Bravo,R.J. Naharro,J.M. García,J.G. Galán,M.S. Raya
Sobre la vulnerabilidad de los robots móviles frente a los ataques hardware
XXXVI Jornadas de Automática, (2015), pp. 358-365
Gomez-Bravo et al., 2016
Gomez-Bravo, F., Naharro, R.J., García, J.M., Galán, J.G., & Raya, M.S. (2016). Hardware Attacks on Mobile Robots: I2C Clock Attacking. In Robot 2015: Second Iberian Robotics Conference, pp. 147-159.
Gómez et al., 2015
J.V. Gómez,A. Vale,S. Garrido,L. Moreno
Performance analysis of fast marching-based motion planning for autonomous mobile robots in ITER scenarios
Robotics and Autonomous Systems, 63 (2015), pp. 36-49
Hamblen and van Bekkum, 2013
J.O. Hamblen,G.M.E. van Bekkum
An Embedded Systems Laboratory to Support Rapid Prototyping of Robotics and the Internet of Things, Education
IEEE Transactions on, 56 (2013), pp. 121-128
Heelan, 2011
S. Heelan
Vulnerability detection systems: Think cyborg, not robot
IEEE Security & Privacy, 3 (2011), pp. 74-77 http://dx.doi.org/10.1109/MSP.2011.70
Huang, 2003
Huang, A., (2003). Hacking the Xbox: An Introduction to Reverse Engineering, No Starch Press.
Jardón et al., 2008
A. Jardón,A. Giménez,R. Correal,S. Martinez,C. Balaguers
Asibot: Robot portátil de asistencia a discapacitados. Concepto, arquitectura de control y evaluación clínica
Revista Iberoamericana de Automática e Informática Industrial RIAI, 5 (2008), pp. 48-59 http://dx.doi.org/10.1016/S1697-7912(08)70144-4
Kachouie et al., 2014
R. Kachouie,S. Sedighadeli,R. Khosla,M.T. Chu
Socially assistive robots in elderly care: a mixed-method systematic literature review
International Journal of Human-Computer Interaction, 30 (2014), pp. 369-393
Karaklajic and Verbauwhede, 2013
D. Karaklajic,I. Verbauwhede
Hardware Designer's Guide to Fault Attacks
IEEE Transactions on Very Large Scale Integration Systems, 21 (2013), pp. 2295-2306 http://dx.doi.org/10.1109/TVLSI. 2012.2231707
Ladd et al., 2004
A.M. Ladd,K.E. Bekris,A.P. Rudys,D.S. Wallach,L.E. Kavraki
On the feasibility of using wireless ethernet for indoor localization
IEEE Transactions on Robotics and Automation, 20 (2004), pp. 555-559
Marques et al., 2007
C. Marques,J. Cristóvão,P. Alvito,P. Lima,J. Frazão,I. Ribeiro,R. Ventura
A search and rescue robot with tele-operated tether docking system
Ind. Robot: An International Journal, 34 (2007), pp. 332-338
Minguez et al., 2004
J. Minguez,L. Montesano,L. Montano
An architecture for sensor-based navigation in realistic dynamic and troublesome scenarios
In Proceedings of the Intelligent Robots and Systems International Conference on, 3 (2004), pp. 2750-2756 http://dx.doi.org/10.1109/IROS.2004.1389825
Moreno et al., 2012
H.A. Moreno,R. Saltaren,I. Carrera,L. Puglisi,R. Aracil
Índices de desempeño de robots manipuladores: una revisión del estado del arte
Revista Iberoamericana de Automática e Informática Industrial RIAI, 9 (2012), pp. 111-122 http://dx.doi.org/10.1016/j.riai.2012.02.005
Morales et al., 2009
J. Morales,J.L. Martínez,M.A. Martínez,A. Mandow
Pure-pursuit reactive path tracking for nonholonomic mobile robots with a 2D laser scanner
Journal on Advances in Signal Processing, 3 (2009), http://dx.doi.org/10.1155/2009/935237
Nakhaeinia et al., 2015
D. Nakhaeinia,P. Payeur,T.S. Hong,B. Karasfi
A hybrid control architecture for autonomous mobile robot navigation in unknown dynamic environment
In 2015 IEEE International Conference on Automation Science and Engineering (CASE), (2015), pp. 1274-1281
Ollero and Heredia, 1995
A. Ollero,G. Heredia
Stability analysis of mobile robot path tracking. In Intelligent Robots and Systems 95. In Proceedings of the Human Robot Interaction and Cooperative Robots
IEEE/RSJ International Conference on, 3 (1995), pp. 461-466 http://dx.doi.org/10.1109/IROS.1995.525925
Ollero et al., 1994
A. Ollero,A. Mandow,V.F. Muñoz,J.G. De Gabriel
Control architecture for mobile robot operation and navigation
Robotics and computer-integrated manufacturing, 11 (1994), pp. 259-269
Ollero et al., 1999
A. Ollero,B.C. Arrue,J. Ferruz,G. Heredia,F. Cuesta,F. López-Pichaco,C. Nogales
Control and perception components for autonomous vehicle guidance. Appliction to the ROMEO vehicles
Control Engineering Practice, 7 (1999), pp. 1291-1299 http://dx.doi.org/10.1016/S0967-0661(99)00091-X
Park et al., 2013
Park, J., Jeong, W., Lee, H.K., Won, J. 2013. An efficient path planning method for a cleaning robot based on ceiling vision. In 2013 IEEE International Conference on Consumer Electronics (ICCE).
Prieto et al., 2007
Prieto, J., Ramos, O., Delgado, A., 2007. Diseño de un gene digital en FPGA y MATLAB con aplicaciones en robótica móvil. XIII Taller Iberchip IWS-2007, Lima, 14.
Tehranipoor and Koushanfaar, 2010
M. Tehranipoor,F. Koushanfaar
A Survey of Hardware Trojan Taxonomy and Detection
IEEE Design and Test of Computers, 27 (2010), pp. 10-25 http://dx.doi.org/10.1109/MDT.2010
Autor para correspondencia. (F. Gomez-Bravo fernando.gomez@diesia.uhu.es)
Copyright © 2017