x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2016

0,500
© Thomson Reuters, Journal Citation Reports, 2016

Indexada en:

SCIE /JCR, Scopus, ScienceDirect

Métricas

  • Factor de Impacto: 0,500(2016)
  • 5-años Factor de Impacto: 0,344
  • SCImago Journal Rank (SJR):0,212
  • Source Normalized Impact per Paper (SNIP):0,308

© Thomson Reuters, Journal Citation Reports, 2016

Revista Iberoamericana de Automática e Informática industrial 2017;14:123-32 - DOI: 10.1016/j.riai.2016.09.009
Muestreo adaptativo aplicado a la robótica: Revisión del estado de la técnica
Adaptive sampling in robotics: A survey
Ignacio Pastor, João Valente,
Robotics Lab, Departamento de Ingenieria de Sistemas y Automática, Universidad Carlos III de Madrid, Av. Universidad 30. Leganés, 28911. Madrid. España
Resumen

En este artículo se presenta la revisión de una técnica de muestreo de especial interés para aplicaciones a sistemas roboticos dedicados a la teledetección. Esta técnica es conocida como muestreo adaptativo. En este artículo se realiza una recopilación de las principales técnicas de muestreo adaptativo aplicados a la robótica, haciendo uso de la planificación de trayectorias. Finalmente, se destaca un conjunto de proyectos actualmente en desarrollo, sobre aplicaciones reales de la técnica de muestreo adaptativo en la robótica.

Abstract

In this paper, a robotics sampling methodology known as Adaptive Sampling (AS) is reviewed. Although the method is not yet widespread in robotics, it plays an important role in remote sensing applications over rapidly changing environments. This article gives an introduction to AS and summarizes the main AS techniques and algorithms applied to robotics. Finally, a number of projects currently under development using AS to solve relevant monitoring or sampling issues, are highlighted.

Palabras clave
Robots de exteriores, Muestreo adaptativo, Teledetección, Planificación de trayectorias, Cobertura Óptima
Keywords
Field robotics, Adaptive sampling, Remote sensing, Path planning, Optimal coverage
Referencias
ASCO, 2016
ASCO, 2016. Autonomous systems, control and optimization lab. http://asco.lcsr.jhu.edu/.
ASTEP, 2016
ASTEP, 2016. Astrobiology science and technology for exploring planets program. http://www.frc.ri.cmu.edu/projects/atacama/.
ASTRIL, 2016
ASTRIL, 2016. Autonomous system technologies research & integration laboratory. http://robotics.asu.edu/.
Béjar and Ollero, 2008
M. Béjar,A. Ollero
Modelado y control de helicópteros autónomos. revisión del estado de la técnica
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 5 (2008), pp. 5-16
Bhatta et al., 2005
Bhatta, P., Fiorelli, E., Lekien, F., Leonard, N.E., Paley, D.A., Zhang, F., Bachmayer, R., Sepulchre, R., 2005. Coordination of an underwater glider fleet for adaptive sampling.
Camilli et al., 2004
Camilli, R., Bingham, B., Jakuba, M., Singh, H., Whelan, J., 2004. Integrating in-situ chemical sampling with auv control systems. In: OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04. Vol. 1. IEEE, pp. 101-109.
Cannell and Stilwell, 2005
Cannell, C.J., Stilwell, D.J., 2005. A comparison of two approaches for adaptive sampling of environmental processes using autonomous underwater vehicles. In: OCEANS, 2005. Proceedings of MTS/IEEE. IEEE, pp. 1514-1521.
Carreras et al., 2012
M. Carreras,P. Ridao,R. García,D. Ribas,N. Palomeras
Inspección visual subacuática mediante robótica submarina
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 9 (2012), pp. 34-45
Castillo et al., 2007
P. Castillo,P. García,R. Lozano,P. Albertos
Modelado y estabilización de un helicóptero con cuatro rotores
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 4 (2007), pp. 41-57
Chaudhuri and Stenger, 2005
A. Chaudhuri,H. Stenger
Survey sampling: theory and methods
CRC Press, (2005)
Comunidad de Madrid, 2015
Comunidad de Madrid, 2015. Los drones y sus aplicaciones en la ingenierivil.
Detweiler et al., 2015
C. Detweiler,J.-P. Ore,D. Anthony,S. Elbaum,A. Burgin,A. Lorenz
Environmental reviews and case studies: Bringing unmanned aerial systems closer to the environment
Environmental Practice, 17 (2015), pp. 188-200
9
Dunbabin and Marques, 2012
M. Dunbabin,L. Marques
Robots for environmental monitoring: Significant advancements and applications
Robotics Automation Magazine, IEEE, 19 (March 2012), pp. 24-39
Envirobot, 2016
Envirobot, 2016. A swimming robot piloted by biological sensors to measure and locate pollutants in aquatic systems. http://wp.unil.ch/envirobot/.
Fiorelli et al., 2003
Fiorelli, E., Bhatta, P., Leonard, N.E., Shulman, I., 2003. Adaptive sampling using feedback control of an autonomous underwater glider fleet. In: Proceedings of 13th Int. Symp. on Unmanned Untethered Submersible Technology (UUST).
Fiorelli et al., 2006
E. Fiorelli,N.E. Leonard,P. Bhatta,D.A. Paley,R. Bachmayer,D.M. Fratantoni
Multi-auv control and adaptive sampling in monterey bay
Oceanic Engineering, IEEE Journal of, 31 (2006), pp. 935-948
Hombal et al., 2010
Hombal, V., Sanderson, A., Blidberg, D., Sept 2010. Multiscale adaptive sampling in environmental robotics. In: Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010 IEEE Conference on. pp. 80-87.
Kim and Shell, 2014
Kim, Y.-H., Shell, D., May 2014. Distributed robotic sampling of non-homogeneous spatio-temporal fields via recursive geometric sub-division. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on. pp. 557-562.
Lermusiaux, 2007
P.F. Lermusiaux
Adaptive modeling, adaptive data assimilation and adaptive sampling
Physica D: Nonlinear Phenomena, 230 (2007), pp. 172-196
Lermusiaux et al., 2007
P.F. Lermusiaux,P.J. Haley Jr.,N.K. Yilmaz
Environmental prediction, path planning and adaptive sampling: Sensing and modeling for efficient ocean monitoring, management and pollution control
Sea Technology, 48 (2007), pp. 35-38
Limnobotics, 2016
Limnobotics, 2016. The autonomous sampling boat. http://limnobotics.ch/en/.
Low et al., 2005
Low, K.H., Gordon, G.J., Dolan, J.M., Khosla, P., 2005. Adaptive sampling for multi-robot wide area prospecting.
Low et al., 2007
Low, K.H., Gordon, G.J., Dolan, J.M., Khosla, P., 2007. Adaptive sampling for multi-robot wide-area exploration. In: Robotics and Automation, 2007 IEEE International Conference on. IEEE, pp. 755-760.
Moreno et al., 2014
H.A. Moreno,R. Saltarén,L. Puglisi,I. Carrera,P. Cárdenas,C. Álvarez
Robótica submarina: Conceptos, elementos, modelado y control
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 11 (2014), pp. 3-19
MSEAS, 2016
MSEAS, 2016. Multidisciplinary simulation, estimation, and assimilation systems. http://mseas.mit.edu/.
Mysorewala et al., 2012
M. Mysorewala,L. Cheded,D. Popa
A distributed multi-robot adaptive sampling scheme for the estimation of the spatial distribution in widespread fields
EURASIP Journal on Wireless Communications and Networking 2012, (2012),
Mysorewala et al., 2009
M. Mysorewala,D. Popa,F. Lewis
Multi-scale adaptive sampling with mobile agents for mapping of forest fires
Journal of Intelligent and Robotic Systems, 54 (2009), pp. 535-565
Neumann et al., 2012
P. Neumann,S. Asadi,A. Lilienthal,M. Bartholmai,J. Schiller
Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution mapping
Robotics Automation Magazine, IEEE, 19 (March 2012), pp. 50-61
NIMBUS, 2016
NIMBUS, 2016. Nebraska intelligent mobile unmanned systems lab. http://nimbus.unl.edu/.
Ortiz et al., 2015
F. Ortiz,A. Guerrero,F. Sánchez-Ledesma,F. García-Córdova,D. Alonso,J. Gilabert
Diseño del software de control de un {UUV} para monitorización oceanográfica usando un modelo de componentes y framework con despliegue flexible
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 12 (2015), pp. 325-337
Ouyang et al., 2014
R. Ouyang,K.H. Low,J. Chen,P. Jaillet
Multi-robot active sensing of non-stationary gaussian process-based environmental phenomena
Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. International Foundation for Autonomous Agents and Multiagent Systems, pp. 573-580
Popa et al., 2004
Popa, D.O., Sanderson, A.C., Komerska, R.J., Mupparapu, S.S., Blidberg, D.R., Chappel, S.G., 2004. Adaptive sampling algorithms for multiple autonomous underwater vehicles. In: Autonomous Underwater Vehicles, 2004 IEEE/OES. IEEE, pp. 108-118.
Prados et al., 2013
R. Prados,R. García,L. Neumann
Construcción automática de ortofotomapas: una aproximación fotométrica
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 10 (2013), pp. 104-115
Rahimi et al., 2005
Rahimi, M., Hansen, M., Kaiser,W. J., Sukhatme, G.S., Estrin, D., 2005. Adaptive sampling for environmental field estimation using robotic sensors. In: Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on. IEEE, pp. 3692-3698.
Rahimi et al., 2004
Rahimi, M., Pon, R., Kaiser, W.J., Sukhatme, G., Estrin, D., Srivastava, M., 2004. Adaptive sampling for environmental robotics. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 4. IEEE, pp. 3537-3544.
Seber and Salehi, 2012
G.A. Seber,M.M. Salehi
Adaptive sampling designs: inference for sparse and clustered populations
Springer Science & Business Media, (2012)
Smith et al., 2011
R.N. Smith,M. Schwager,S.L. Smith,B.H. Jones,D. Rus,G.S. Sukhatme
Persistent ocean monitoring with underwater gliders: Adapting sampling resolution
Journal of Field Robotics, 28 (2011), pp. 714-741
Sukhatme et al., 2007
G.S. Sukhatme,A. Dhariwal,B. Zhang,C. Oberg,B. Stauffer,D.A. Caron
Design and development of a wireless robotic networked aquatic microbial observing system
Environmental Engineering Science, 24 (2007), pp. 205-215
Thompson et al., 2013
Thompson, D.R., Cabrol, N.A., Furlong, M., Hardgrove, C., Low, B.K. H., Moersch, J., Wettergreen, D., May 2013. Adaptive sensing of time series with application to remote exploration. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on. pp. 3463-3468.
Thompson, 2011
Thompson, S., 2011. Adaptive network and spatial sampling. Statistics Canada 37, Supplement (2), 183-196.
Thompson and Collins, 2002
Thompson, S.K., Collins, L.M., 2002. Adaptive sampling in research on risk-related behaviors. Drug and Alcohol Dependence 68, Supplement, 57-67.
Yilmaz et al., 2008
N. Yilmaz,C. Evangelinos,P. Lermusiaux,N. Patrikalakis
Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming
Oceanic Engineering, IEEE Journal of, 33 (Oct 2008), pp. 522-537
Yilmaz, 2005
Yilmaz, N.K., 2005. Path planning of autonomous underwater vehicles for adaptive sampling. Ph.D. thesis, Massachusetts Institute of Technology.
Yu et al., 2012
H. Yu,Y. Jiao,Z. Su,K. Reid
Performance comparison of traditional sampling designs and adaptive sampling designs for fishery-independent surveys: A simulation study
Fisheries Research, 113 (2012), pp. 173-181
Zarco-Tejada et al., 2008
P.J. Zarco-Tejada,J.A.J. Berni,L. Suárez,E. Fereres
A new era in remote sensing of crops with unmanned robots
SPIE Newsroom, (2008)
Zhang and Sukhatme, 2007
B. Zhang,G.S. Sukhatme
Adaptive sampling for estimating a scalar field using a robotic boat and a sensor network
Robotics and Automation, 2007 IEEE International Conference on. IEEE, pp. 3673-3680
Autor para correspondencia. (João Valente jvalente@ing.uc3m.es)
Copyright © 2017