Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Infe...
Información de la revista
Vol. 11. Núm. 3.
Páginas 304-314 (Julio - Septiembre 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
11218
Vol. 11. Núm. 3.
Páginas 304-314 (Julio - Septiembre 2014)
Open Access
Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Inferior con dos grados de libertad
Modeling and Control of a Exoskeleton for Lower Limb Rehabilitation with two degrees of freedom
Visitas
11218
Ricardo Lópeza,1,
Autor para correspondencia
jlopez@ctrl.cinvestav.mx

Autor para correspondencia.
, Hipolito Aguilara, Sergio Salazarb, Rogelio Lozanoc, Jorge A. Torresd
a PHD student Cinvestav D.F., México
b UMI, LAFMIA, Cinvestav D.F., México
c CNRS Research Director, Université de Technologie de Compiègne,60200 Compiègne, France
d DCA, Cinvestav D.F., México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los exoesqueletos mecánicos son robots acoplados a las extremidades del cuerpo humano enfocados en el incremento de su fuerza, velocidad y rendimiento principalmente. Las principales aplicaciones son en la milicia, en la industria y en la medicina. El exoesqueleto se puede utilizar para la rehabilitación de las extremidades cuando por causas de algún accidente o enfermedad se tiene una actividad muscular reducida o nula. En este artículo se presenta un exoesqueleto de dos grados de libertad para realizar ejercicios de rehabilitación para tobillo y rodilla. El diseño y fabricación del exoesqueleto está basado en la instrumentación de una ortesis del miembro inferior derecho. El Exoesqueleto utiliza sensores que estiman la fuerza producida por el humano y se encuentran incorporados en los actuadores de tipo SEA (Series Elastic Actuator) que se utilizan para amplificar la fuerza humana. Además mediante sensores se estima la posición y velocidad angular de las articulaciones, que se utilizan para controlar el movimiento de la pierna. En el artículo se presentan: un estudio del modelo dinámico del exoesqueleto y de los actuadores acoplados por medio del método de perturbaciones singulares, el diseño de un control basado en la suma de fuerzas generadas por el humano y el exoesqueleto, el diseño y fabricación del prototipo experimental y sus actuadores. Se realizaron simulaciones que muestran el buen desempeño del controlador propuesto. Los resultados experimentales muestran que existe una amplificación de la fuerza generada por el portador y amplificada por la mecánica del exoesqueleto, ofreciendo una disminución en el esfuerzo del usuario para mantenerse de pie y realizar ejercicios de flexión y extensión de las articulaciones. De manera que la amplificación de la fuerza puede aumentarse o disminuirse según se necesite, permitiendo al usuario una mejora evolutiva hasta llegar a la rehabilitación completa.

Palabras clave:
Exoesqueleto Mecánico
Rehabilitación
Control de Fuerza
Actuador SEA.
Abstract

Exoskeletons are robots attached to the extremities of the human body focused on increasing their strength, speed and performance primarily. The applications are in the military, industry and medical. The exoskeleton can be used for the rehabilitation of limbs because of accident or illness that can cause little muscle activity or null. This article presents an exoskeleton of two degrees of freedom that is used to ankle and knee exercise rehabilitation. The design and manufacture of the exoskeleton is based on the instrumentation of a right lower limb orthoses. The exoskeleton contains sensors to estimate the force produced by a human and contains SEA actuators (Serial Elastics Actuators) that used to amplify the human force. Also contains sensors to estimate the position and angular velocity in joints. This paper presents in general: a study of the dynamic model of the exoskeleton and actuators coupled through the singular perturbation method, the design of a control based on the sum of forces generated by the human and the exoskeleton, and the design and manufacture of an experimental prototype. The simulation result shows that the sum of forces between the human and the exoskeleton is controlled to obtain a desired angular position of the joints (knee and ankle). Experimental results show that exist a human force amplification generated by the exoskeleton, providing a reduction in the patient's effort to remain standing and bending exercises. Then force amplification can be increased or decreased as needed in different workouts that will allow the user an evolutionary improvement to achieve a full rehabilitation.

Keywords:
Mechanical Exoskeleton
Rehabilitation
Force control
SEA Actuators.
Referencias
[Bharadwaj and Sugar, 2006]
Bharadwaj, K., Sugar, T.G., 2006. Kinematics of a robotic gait trainer for stroke rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA ‘06) pp. 3492-3497.
[Bouri et al., 2009]
Bouri, M., Gall, B.L., Clavel, R., 2009. A new concept of parallel robot for rehabilitation and fitness: the lambda. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘09) pp. 2503-2508.
[Bouri et al., 2006]
Bouri, M., Stauffer, Y., Schmitt, C., 2006. The walktrainer: a robotic system for walking rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘06) pp. 1616-1621.
[Bullimore and Burn, 2007]
Bullimore, S.R., Burn, J.F. J. T., 2007. Ability of the planar spring mass model to predict mechanical parameters in running humans.
[Derrick et al., 2000]
Derrick, T.R., Caldewell, G.E., Hamill, J., 2000. Mass spring damper modeling of the human body to study running and hopping: an overview.
[Ding et al., 2010]
Ding, Y., Sivak, M., Weinberg, B., Mavroidis, C., Holden, M.K., 2010. Nuvabat: northeastern university virtual ankle and balance trainer. in Proceedings of the IEEE Haptics Symposium, (HAPTICS ‘10) pp. 509-514.
[Feldman, 1974]
Feldman, A.G., 1974. Change in the length of the muscle as a consequence of a shift in equilibrium in the muscle-load system. Biophys vol. 19, pp. 544-548.
[Ferris et al., 2005]
Ferris, D.P., Sawicki, G.S., Domingo, A.R., 2005. Powered lower limb orthoses for gait rehabilitation. Topics in Spinal Cord Injury Rehabilitation vol. 11, no. 2, pp. 34-49.
[Glynn and Fiddler, 2009]
Glynn, A., Fiddler, H., 2009. The physiotherapist's pocket guide to exercise, assessment, prescription and training. ELSEVIER.
[Goffer, 2006]
Goffer, A., 2006. Gait-locomotor apparatus US patent number 7 153 242.
[Hogan, 1980]
Hogan, N., 1980. Mechanical impedance control in assistive devices and manipulators. Joint Automatic Control.
[Hogan, 1984]
Hogan, N., 1984. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Automat. Contr. vol. 29, pp. 681-690.
[Hogan, 1985]
Hogan, N., 1985. The mechanics of multi-joint posture and movement. Biological Cybern vol. 52, pp. 315-331.
[Homma and Usuba, 2007]
Homma, K., Usuba, M., 2007. Development of ankle dorsiflexion/plantarflexion exercise device with passive mechanical joint. in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR ‘07) pp. 292-297.
[Hoppenfeld and Murthyr, 2001]
Hoppenfeld, S., Murthyr, V.L., 2001. Fracturas tratamiento y rehabilitacion. MARBAN First Edition.
[Huston, 2012]
Huston, R.L., 2012. Principles of biomechanics. University of Rhode Island CRC Press.
[Hwang et al., 2006]
Hwang, S., Kim, J., Yi, J., Tae, K., Ryu, K.,, Kim, Y., 2006. Development of an active ankle foot orthosis for the prevention of foot drop and toe drag. in Proceedings of the International Conference on Biomedical and Pharmaceutical Engineering, (ICBPE ‘06) pp. 418-423.
[Kawamoto and Sankai, 2002]
Kawamoto, H., Sankai, Y., 2002. Power assist system hal-3 for gait disorder person. in Proceedings of the 8th International Conference on Computers Helping People with Special Needs pp. 196-203.
[Kawamoto et al., 2009]
Kawamoto, H., T. Hayashi, Sakurai, T., Eguchi, K., Sankai, Y., 2009. Development of single leg version of hal for hemiplegia. in Proceedings of the 31st Annual International Conference of the IEEE Engineering inMedicine and Biology Society, (EMBC ‘09) pp. 5038-5043.
[Kelso and Holt, 1980]
Kelso, J.A. S., Holt, K.G., 1980. Exploring a vibratory systems analysis of human movement production. Neurophys vol. 43, pp. 1183-1196.
[Khalil, 2002]
Khalil, H.K., 2002. Nonlinear systems. Third Edition pp. 433.
[Khanna et al., 2010]
Khanna, I., Roy, A., Rodgers, M.M., Krebs, H.I., MacKo, R.M., Forrester, L.W., 2010. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. Journal of NeuroEngineering and Rehabilitation vol. 7, no. 1, article 23.
[Kikuchi et al., 2010]
Kikuchi, T., Oda, K., Furusho, J., 2010. Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch. Advanced Robotics vol. 24, no. 16, pp. 671-686.
[Krebs et al., 2008]
Krebs, H.I., Dipietro, L., Levy-Tzedek, S., 2008. A paradigm shift for rehabilitation robotics. IEEE Engineering in Medicine and Biology Magazine vol. 27, no. 4, pp. 61-70.
[Nichols and Houk, 1976]
Nichols, T.R., Houk, J.C., 1976. The improvement in linearity and the regulation of stiffness that results from the actions of the stretch reflex. Jornal of Neurophysiology vol. 39, pp. 119-142.
[Nikitczuk et al., 2010]
Nikitczuk, J., Weinberg, B., Canavan, P.K., Mavroidis, C., 2010. Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid. IEEE/ASME Transactions on Mechatronics vol. 15, no. 6, Article ID 5353649, pp. 952-960.
[Nikooyan and Zadpoor, 2011]
Nikooyan, A.A., Zadpoor, A.A., 2011. Modeling the stiffnes characteristics of the human body while running with various stride lengths.
[Peshkin et al., 2005]
Peshkin, M., Brown, D.A., Munne, J.J. S., 2005. Kineassist: a robotic overground gait and balance training device. in Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics pp. 241-246.
[Pratt and Williamson, 1995]
Pratt, G.A., Williamson, M.M., 1995. Series elastic actuator. IEEE.
[Pratt et al., 2002]
Pratt, J., Krupp, B., Morse, C., 2002. Series elastic actuators for high fidelity force control. Industrial Robot: An International Journal 29 (3), 234-241.
[Pratt et al., 2004]
Pratt, J.E., Krupp, B.T., Morse, C.J., Collins, S.H., 2004. The roboknee: an exoskeleton for enhancing strength and endurance during walking. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 3. IEEE, pp. 2430-2435.
[Robinson et al., 1999]
Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A., 1999. Series elastic actuator development for a biomimetic walking robot. IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[Rocon et al., 2008]
Rocon, E., Rúız, A., Belda-Lois, J., Moreno, J., Pons, J.L., Raya, R., Ceres, R., 2008. Diseño, desarrollo y validación de dispositivo robótico para la supresión del temblor patológico. Revista Iberoamericana de Automática e Informatica Industrial vol. 5 (núm. 2), pp. 79-92.
[Roy et al., 2007]
Roy, A., Krebs, H.I., Patterson, S.L., 2007. Measurement of human ankle stiffness using the anklebot. in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR ‘07) pp. 356-363.
[Satici et al., 2009]
Satici, A.C., Erdogan, A., Patoglu, V., 2009. Design of a reconfigurable ankle rehabilitation robot and its use for the estimation of the ankle impedance. in Proceedings of the IEEE International Conference on Rehabilitation Robotics, (ICORR ‘09) pp. 257-264.
[Sawicki and Ferris, 2009]
Sawicki, G.S., Ferris, D.P., 2009. A pneumatically powered kneeankle-foot orthosis (kafo) with myoelectric activation and inhibition. Journal of NeuroEngineering and Rehabilitation vol. 6, p. 23.
[Schmitt et al., 2004]
Schmitt, C., Metrailler, P., Al-Khodairy, A., 2004. The motion maker: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation. in Proceedings of the 8th Vienna International Workshop on Functional Electrical Stimulation pp. 117-120.
[Seo and Lee, 2009]
Seo, K.H., Lee, J.J., 2009. The development of two mobile gait rehabilitation systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering vol. 17, no. 2, Article ID 4785182, pp. 156-166.
[Spong and Vidyasagar, 1989]
Spong, M., Vidyasagar, M., 1989. Robot dynamics and control John Wiley and Sons.
[Sui et al., 2009]
Sui, P., Yao, L., Lin, Z., Yan, H., Dai, J.S., 2009. Analysis and synthesis of ankle motion and rehabilitation robots. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘09) pp. 2533-2538.
[Vidyasagar, 1993]
Vidyasagar, M., 1993. Nonlinear systems analysis Prentice hall,New Jersey.
[Wyeth, 2006]
Wyeth, G., 2006. Information technology and electrical engineering. IEEE.
[Yoon et al., 2010]
Yoon, J., Novandy, B., Yoon, C.H., Park, K.J., 2010. A 6-dof gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains. IEEE/ASME Transactions on Mechatronics vol. 15, no. 2, Article ID 5424007, pp. 201-215.

URL: http://www.hds.utc.fr/lafmia (Ricardo López)

Copyright © 2013. EA
Opciones de artículo
Herramientas