Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Implementación basada en el middleware OROCOS de controladores dinámicos pasiv...
Información de la revista
Vol. 10. Núm. 1.
Páginas 96-103 (Enero - Marzo 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
5278
Vol. 10. Núm. 1.
Páginas 96-103 (Enero - Marzo 2013)
Artículo
Open Access
Implementación basada en el middleware OROCOS de controladores dinámicos pasivos para un robot paralelo
Dynamic controllers implementation based on the OROCOS middleware
Visitas
5278
Marina Vallésa,
Autor para correspondencia
mvalles@isa.upv.es

Autor para correspondencia.
, Jose I. Cazalillaa, Ángel Valeraa, Vicente Matab, Álvaro Pagec
a Instituto de Automática e Informática Industrial, Universidad Politécnica de Valencia, Valencia, Espaná
b Centro de Investigación de Tecnología de Vehículos, Universidad Politécnica de Valencia, Valencia, Españ
c Departamento de Física Aplicada, Universidad Politécnica de Valencia, Valencia, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

La complejidad actual de los sistemas robotizados y de las aplicaciones que éstos deben realizar requiere que los robots dispongan de un control automático que permita la ejecución de las distintas tareas que forman parte del algoritmo de control y que tenga en cuenta cuestiones relacionadas por ejemplo con la periodicidad, el modo de ejecución, el hardware que se utilizará, etc. Para el desarrollo de este tipo de aplicaciones de control en los últimos añ os se tiende a la programación basada en componentes puesto que ésta permite obtener código reusable. Así mismo también se está incrementando la utilización de middlewares que permiten la abstracción de los sistemas operativos, el soporte de tiempo real y la infraestructura de comunicaciones. En el presente artículo se propone la utilización de un middleware orientado especialmente a la robótica: OROCOS. Así se describe cómo haciendo uso de una de sus librerías, Orocos Toolchain, se han desarrollado una serie de componentes correspondientes a distintos algoritmos para el control dinámico de robots, aplicándose a un robot paralelo de 3 grados de libertad (DOF).

Palabras clave:
tiempo-real
middleware
implementación basada en componentes
manipuladores paralelos
Abstract

Automatic control of robotic systems nowadays deals more and more with the implementation of different tasks to be achieved by the robot with distinct complexity degree, periodic or aperiodic, with local execution or distributed along a communication network and needing to deal with different kinds of hardware. Deal with the controller implementation for a new robotic platform involved to develop suitable software again for the new hardware or, in the best case, to adapt the existing one. In the recent years it has been tending to a component-based programing that allows to develop reusable software and to use a middleware that make it possible to abstract the developed software from the used hardware and from the available communication protocols. At this paper one of these middleware has been used, specially oriented to robotics as is OROCOS. Using the Orocos Toolchain library the real-time components needed for the implementation of several dynamic controllers for a parallel manipulator have been developed. At this paper the robot and the designed controllers are described and the results over the actual robot are shown.

Keywords:
Real-time
middleware
based-on-components implementation
parallel manipulators
Referencias
[Abdellatif and Heimann, 2010]
H. Abdellatif, B. Heimann.
Advanced model-based control of a 6-dof hexapod robot: A case study.
IEEE/ASME Transactions on Mechatronics, 15 (2010), pp. 269-279
[Alonso et al., 2011]
D. Alonso, J.A. Pastor, P. Sánchez, a.B.l.C. Vicente-Chicote.
Generación automática de software para sistemas de tiempo real: Un enfoque basado en componentes, modelos y frameworks.
Revista Iberoamericana de Automática e Informática Industrial, 9 (2011), pp. 170-181
[Bruyninckx, 2001]
Bruyninckx, H., 2001. Open robot control software: the orocos project. In: In IEEE International Conference on Robotics and Automation (ICRA’01), vol. 3, pp. 2523-2528.
[Campbell et al., 1999]
Campbell, A., Coulson, G., Kounavis, M., 1999. Managing complexity: Middleware explained. IEEE Computer Society.
[Chablat and Wenger, 2003]
D. Chablat, P. Wenger.
Architecture optimization of a 3-dof translational parallel mechanism for machining applications, the orthoglide.
IEEE Transactions on Robotics and Automation, 19 (2003), pp. 403-410
[Clavel, 1988]
Clavel, R., 1988. Delta, a fast robot with parallel geometry. In: Proceedings of 18th International Symposium on Industrial Robot.
[Clements and Shaw, 2009]
Clements, P., Shaw, M., july-aug. 2009. “the golden age of software architecture revisited. Software, IEEE 26 (4), 70-72. DOI: 10.1109/MS. 2009.83.
[Collett et al., 2005]
Collett, I.T., MacDonald, B.A., Gerkey, B.P., 2005. Player 2.0: Toward a practical robot programming framework. In: In Australasian Conference on Robotics and Automation (ACRA’05).
[Cote et al., 2006]
Cote, C., Letourneau, D., Michaud, F., Brosseau, Y., 2006. Robotic software integration using marie. International Journal of Advanced Robotic Systems 3.
[Díaz-Rodríguez et al., 2008]
M. Díaz-Rodríguez, V. Mata, N. Farhat, S. Provenzano.
Identifiability of the dynamic parameters of a class of parallel robots in the presence of measurement noise and modeling discrepancy.
Mechanics Based Design of Structures and Machines, 36 (2008), pp. 478-498
[Díaz-Rodríguez et al., 2010]
M. Díaz-Rodríguez, V. Mata, A. Valera, A. Page.
A methodology for dynamic parameters identification of 3-dof parallel robots in terms of relevant parameters.
Mechanism and Machine Theory, 45 (2010), pp. 1337-1356
[Fu and Mills, 2007]
K. Fu, J.K. Mills.
Robust control design for a planar parallel robot.
International Journal of Robotics & Automation, 22 (2007), pp. 139-147
[Gerkey et al., 2003]
Gerkey, B., Vaughan, R., Howard, A., 2003. The player/stage project: Tools for multi-robot and distributed sensor systems. In: In Proceedings of the 11th International Conference on Advanced Robotics.
[Gou et al., 2009]
H.B. Gou, Y.G. Liu, G.R. Liu, H.R. Li.
Cascade control of a hy- draulically driven 6-dof parallel robot manipulator based on a sliding mode.
Control Engineering Practice, 16 (2009), pp. 105-168
[Gough and Whitehall, 1962]
Gough, V., Whitehall, S., 1962. Universal tire test machine. In: Proceedings of 9th International Technical Congress FISITA.
[Grotjahn et al., 2004]
M. Grotjahn, B. Heimann, H. Abdellatif.
Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based con- trol.
Multibody System Dynamics, 11 (2004), pp. 273-294
[Jalón and Bayo, 1994]
Jalón, J.-G., Bayo, E., 1994. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time challenge. Springer-Verlag, New-York.
[Kim et al., 1999]
D. Kim, J.Y. Kang, K.I. Lee.
Nonlinear robust control design for a 6-dof parallel robot.
KSME International Journal, 13 (1999), pp. 557-568
[Lee and Arjunan, 1991]
K. Lee, S. Arjunan.
A three-degrees-of-freedom micromotion in- parallel actuated manipulator.
IEEE Transactions on Robotics and Automa- tion, 7 (1991), pp. 634-641
[Li and Xu, 2007]
Y. Li, Q. Xu.
Design and development of a medical parallel robot for cardiopulmonary resuscitation.
IEEE/ASME Tr, 12 (2007), pp. 265-273
[Ortega and Spong, 1989]
R. Ortega, M. Spong.
Adaptive motion control of rigid robots: a tutorial.
Automatica, 25 (1989), pp. 877-888
[Paden and Panja, 1988]
B. Paden, R. Panja.
Globally asymptotically stable pd+ controller for robot manipulators.
Int. J. on Control, 47 (1988), pp. 1697-1712
[Pierrot et al., 2009]
F. Pierrot, V. Nabat, O. Company, S. Krut, P. Poignet.
Optimal design of a 4-dof parallel manipulator: From academia to industry.
IEEE Transac- tions on Robotics, 25 (2009), pp. 213-224
[Stan et al., 2009]
S.D. Stan, R. Balan, V. Maties, C. Rad.
Kinematics and fuzzy control of isoglde3 medical parallel robot.
Mechanika, 1 (2009), pp. 62-66
[Steward, 1965]
Steward, 1965. A platform with 6 degree of freedom. In: Proceedings of the Institution of mechanical engineers.
[Tang et al., 2011]
Tang, J., Mu, L., Kwong, C., Luo, X., 2011. An optimization model for softwa- re component selection under multiple applications development. European Journal of Operational Research 212 (2), 301-311. DOI: 10.1016/j.ejor.2011.01.045.
[Theodor, 2003]
I. Theodor.
Standardization of terminology.
Mechanism and Machine Theory, 38 (2003), pp. 597-1111
[Tsai, 1999]
Tsai, L.W., 1999. Robot Analysis: The Mechanics of Serial and Parallel Manipulator. Wiley Interscience, Canada.
[Utz et al., 2002]
H. Utz, S. Sablatno¿ g, S. Enderle, G. Kraetzchmar.
Miro - middleware for mobile robot applications.
IEEE Transactions on Robotics an, 18 (2002), pp. 493-497
Copyright © 2012. CEA
Opciones de artículo
Herramientas