covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Diseño de AUV.Arquitectura de hardware y software
Información de la revista
Vol. 10. Núm. 3.
Páginas 333-343 (Julio - Septiembre 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
6089
Vol. 10. Núm. 3.
Páginas 333-343 (Julio - Septiembre 2013)
Open Access
Diseño de AUV.Arquitectura de hardware y software
AUV design. Hardware and Software Architecture
Visitas
6089
Alain Martíneza,b,
Autor para correspondencia
amguardia@uclv.edu.cu

Autor para correspondencia. Tel.: +053 42 281632.
, Yidier Rodrigueza, Luis Hernándeza, Carlos Guerraa, Jorge Lemusa, Hichem Sahlib
a Universidad Central “Marta Abreu” de Las Villas (UCLV), Facultad de Ingeniería Eléctrica, Departamento de Automática y Sistemas Computacionales, Grupo de Automatización, Robótica y Percepción (GARP), Carretera a Camajuaní Km 5 1/2, CP 54830, Santa Clara, Villa Clara, Cuba
b Vrije Universiteit Brussel (VU B), Department of Electronics and Informatics (ET RO), Pleinlaan, 2, B-1050 Brussels, Belgium
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El presente documento discute la estrategia bajo la que fueron concebidas la arquitectura de hardware y software para el prototipo de vehículo autónomo: HRC-AUV, así como la selección de los elementos fundamentales que las componen. El diseño obtenido pondera la sencillez y el desarrollo en condiciones de bajo costo, factores útiles a investigadores que comienzan su actividad en este campo. El trabajo resume las prestaciones que brindan dichas estructuras y las pruebas preliminares de operatividad a que han sido sometidas para demostrar la validez de su empleo en la explotación de un AUV. De igual forma se presentan los modelos dinámicos linealizados de la planta, utilizados en la sintonía de los lazos de control. La respuesta de dichos lazos y en general del HRC-AUV navegando en el océano, es presentada a través de los resultados obtenidos en varias pruebas experimentales.

Palabras clave:
AUV
arquitectura de hardware
arquitectura de software.
Abstract

This paper discusses the strategy under which were conceived the hardware and software architecture for autonomous vehicle prototype: HRC-AUV, and the selection of the fundamental elements that compose them. The obtained design weights simplicity and development in terms of low cost, factors useful to researchers begin their activity in this field. The paper summarizes the benefits provided by these structures and preliminary operational tests that have been submitted to demonstrate the validity of their use in the operation of an AUV. Likewise are linearized dynamic models of the plant, used in the tuning of the control loops are presented. The response of such loops and in general the HRC-AUV navigating in the ocean is presented through the results of several experimental tests.

Keywords:
AUV
hardware architecture
software architecture.
Referencias
[Batlle et al., 2004]
J. Batlle, P. Ridao, R. Garcia, M. Carreras, X. CufÃ, A. El-Fakdi, D. Ribas, T. Nicosevici, E. Batlle, G. Oliver, A. Ortiz, J. Antich.
Uris: Underwater robotic intelligent system.
Automation for the Maritime Industries., pp. 177-203
[Breivik and Fossen, 2004]
M. Breivik, T. Fossen.
Path following of straight lines and circles for marine surface vessels.
In: IFAC Conf. Contr. Appl. Marine Systems,
[Breivik and Fossen, 2009]
M. Breivik, T. Fossen.
Guidance laws for autonomous underwater vehicles.
Underwater Vehicles. InTech, pp. 51-76
[Brown et al., 2009]
H.C. Brown, A. Kim, R.M. Eustice.
An overview of autonomous underwater vehicle research and testbed at perl.
Marine Technology Society Journal, 43 (2009), pp. 33-47
[Calvo et al., 2009]
O. Calvo, A. Sousa, J. Bibiloni, H. Curti, G. Acosta, A. Rozenfeld.
Low-cost autonomous underwater vehicle for underwater acoustic inspections.
Journal of Maritime Research, 6 (2009), pp. 37-52
[Encarnaà § ão and Pascoal, 2001]
P. Encarnaà § ão, A. Pascoal.
Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft.
In: Decision and Control. Vol. 1. IEEE, pp. 964-969
[Estrela da Silva et al., 2007]
J. Estrela da Silva, B. Terra, Martins, R.J. Borges de Sousa.
Modeling and simulation of the lauv autonomous underwater vehicle.
In: 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics,
[Fossen, 1994]
T.I. Fossen.
Guidance and Control of Ocean Vehicles.
John Wiley & Sons, (1994),
[Fossen, 2002]
T.I. Fossen.
Marine control systems: Guidance, navigation and control of ships rigs and underwater vehicles.
Marine Cybernetics, (2002),
[Fossen, 2011]
T.I. Fossen.
Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons, (2011),
[Fossen and Ross, 2006]
T.I. Fossen, A. Ross.
Nonlinear modelling identification and control of uuvs.
pp. 13-42
[García et al., 2012]
J.M. García, J.A. Almansa, J.M.G. Sierra.
Automática marina: una revisión desde el punto de vista del control.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 9 (2012), pp. 205-218
[García-García et al., 2012]
D. García-García, Y. Valeriano-Medina, L. Hernandez, A. Martinez.
Wave filtering for heading control of an auv based on passive observer.
IJMS, 41 (2012), pp. 540-549
[Hegrenaes and Hallingstad, 2011]
O. Hegrenaes, O. Hallingstad.
Model-aided ins with sea current estimation for robust underwater navigation.
IEEE, Oceanic Engineering, 36 (2011), pp. 316-337
[Hegrenaes et al., 2007a]
O. Hegrenaes, O. Hallingstad, K. Gade.
Towards model-aided navigation of underwater vehicles.
Modeling, Identification and Control, 28 (2007), pp. 10
[Hegrenaes et al., 2007b]
O. Hegrenaes, O. Hallingstad, B. Jalving.
A comparison of mathematical models for the hugin 4500 auv based on experimental data.
In: IEEE International Symposium on Underwater Technology (UT’07), pp. 558-567
[Jakuba, 2003]
Jakuba, M.V., 2003. Modeling and control of an autonomous underwater vehicle with combined foil/thruster. Ph.D. thesis, Massachusetts Institute Of Technology.
[Kangsoo and Tamaki, 2002]
K. Kangsoo, U. Tamaki.
3-dimensional trajectory tracking control of an auv “r-one robot” considering current interaction.
In: Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference,
[LaPointe, 2006]
LaPointe, C.E., 2006. Virtual long baseline (vlbl) autonomous underwater vehicle navigation using a single transponder. Master of science, Massachusetts Institute of Technology.
[Martinez et al., 2010]
A. Martinez, Y. Rodriguez, L. Hernandez, C. Guerra, H. Sahli.
Hardware and software architecture for auv based on low-cost sensors.
In:11th International Conference on Control, Automation, Robotics and Vision, ICARCV, pp. 1428-1433
[McEwen and Streitlien, 2006]
R. McEwen, K. Streitlien.
Modeling and control of a variable-length auv. Technical report.
Monterey Bay Aquarium Research Institute, (2006),
[Morgado et al., 2007]
Morgado, M., Oliveira, P., Silvestre, C., Vasconcelos, J., 2007. Vehicle dynamics aiding technique for usbl/ins underwater navigation system. In: Longi, S., Vukic, Z. (Eds.), 7th Conference of Control Applications in Marine Systems. Vol. 7. IFAC, Bol, Croatia.
[Petrich, 2009]
Petrich, J., 2009. Improved guidance, navigation, and control for autonomous underwater vehicles: Theory and experiment. Ph.D. thesis, Virginia Polytechnic Institute and State University.
[Sangekar et al., 2008]
M. Sangekar, M. Chitre, T. Beng Koay.
Hardware architecture for a modular autonomous underwater vehicle starfish.
In: OCEANS 2008, pp. 1-8
[Sanz et al., 2010]
P.J. Sanz, M. Prats, P. Ridao, D. Ribas, G. Oliver, A. Ortiz.
Recent progress in the rauvi project. a reconfigurable autonomous underwater vehicle for intervention.
In: 52th International Symposium ELMAR-2010, pp. 471-474
[Sname, 1950]
Sname, 1950 Nomenclature for treating the motion of a submerged body through a fluid., 1-5.
[Stutters et al., 2008]
L. Stutters, H. Liu, C. Tiltman, D.J. Brown.
Navigation technologies for autonomous underwater vehicles. Ieee Transactions On SysTems.
Man And Cybernetics-Part C: Applications And Reviews, 38 (2008), pp. 581-589
[Valeriano-Medina et al., 2012]
Y. Valeriano-Medina, A. Martinez, L. Hernandez, H. Sahli, Y. Rodriguez, J. Cañizares.
Dynamic model for an autonomous underwater vehicle based on experimental data.
Mathematical and Computer Modelling of Dynamical Systems, (2012), pp. 1-26
[Willumsen et al., 2007]
A.B. Willumsen, O.K. Hagen, P.N. Boge.
Filtering depth measurements in underwater vehicles for improved seabed imaging.
In: OCEANS 2007, pp. 1-6
Copyright © 2012. EA
Opciones de artículo