x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Solicitud de permisos - Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2016

0,500
© Thomson Reuters, Journal Citation Reports, 2016

Indexada en:

SCIE /JCR, Scopus, ScienceDirect

Métricas

  • Factor de Impacto: 0,500 (2016)
  • SCImago Journal Rank (SJR):0,212
  • Source Normalized Impact per Paper (SNIP):0,308

© Thomson Reuters, Journal Citation Reports, 2016

Revista Iberoamericana de Automática e Informática industrial 2017;14:217-33 - DOI: 10.1016/j.riai.2017.05.004
Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación
Control and operation of wastewater treatment plants (I)
Ramon Vilanova, , Ignacio Santín, Carles Pedret
Departamento de Telecomunicaciones y de Ingeniería de Sistemas, Escuela de Ingeniería, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Resumen

Este trabajo constituye la primera parte de una revisión de la problemática del control y operación de estaciones depuradoras de aguas residuales (EDAR) para el tratamiento de agua residual urbana. En esta primera parte nos centramos en el modelado y simulación mientras que la segunda parte se dedica en exclusiva al control y operación. Esta depuración se realiza, mayoritariamente, mediante procesos biológicos, concretamente, mediante el denominado proceso de fangos activados. El hecho de tratar con un proceso biológico conlleva una elevada complejidad tanto desde el punto de vista de modelado como, por supuesto, de control y operación. Para poder ubicar convenientemente el problema, se presenta una caracterización de las aguas residuales urbanas y las necesidades de depuración asociadas. El control y operación descansan en gran medida en la disponibilidad de modelos apropiados y, ya hoy en día, de una elevada fiabilidad. Se presentan los modelos de la familia ASM; poniendo especial énfasis en el ASM1 que se describe en más detalle; así como las características de otras unidades de proceso como el decantador y su interconexión. En estos modelos destacan los entornos BSM de benchmarking, que han sido esenciales para todo el posterior desarrollo en la actividad de control y operación.

Abstract

This tutorial is the first part of a review of the problems arising with the control and operation of wastewater treatment plants (WWTP) for urban wastewater. This first part will concentrate in the modelling and simulation steps whereas the second part will cover the control and operation issues. This treatment is carried out, mainly, by biological processes. Specifically, by the so-called activated sludge process. Dealing with a biological process entails a high complexity both from the viewpoint of modelling and, of course, from what matters to control and operation. In order to properly locate the problem, a characterisation of the urban wastewater and the associated treatment needs are presented. Control and operation rely heavily on the availability of appropriate models and, today, of proved reliability. The models of the ASM family are presented; placing special emphasis on the ASM1 that is described in more detail; as well as the characteristics of other process units like the settler and its interconnection. These models highlight the BSM benchmarking environments, which have been essential for all subsequent development in the control and operation activity.

Palabras clave
Estaciones depuradoras de aguas residuales, proceso de fangos activados, benchmarking
Keywords
wastewater treatment plants, activated sludge process, benchmarking
Referencias
Alex et al., 2008
J. Alex,L. Benedetti,J. Copp,K. Gernaey,U. Jeppsson,I. Nopens,M.-N. Pons,J.-P. Steyer,P. Vanrolleghem
Benchmark simulation model no 1 (bsm1). Tech. rep.
Lund University, (2008)
Batstone et al., 2002
D.J. Batstone,J. Keller,I. Angelidaki,S. Kalyuzhnyi,S. Pavlostathis,A. Rozzi,W. Sanders,H. Siegrist,V. Vavilin
The iwa anaerobic digestion model no 1 (adm1)
Water Science and Technology, 45 (2002), pp. 65-73
Cadet et al., 2015
C. Cadet,V.D.S. Martins,D. Dochain
Dynamic modeling of clarifier-thickeners for the control of wastewater treatment plants: a critical analysis
En: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), IEEE., (2015 oct) http://dx.doi.org/10.1109/icstcc.2015.7321354
Carstensen et al., 1995
J. Carstensen,P. Haffemoës,H. Madsen
Statistical identification of monod-kinetic parameters from on-line measurements
Water Science and Technology, 31 (1995), pp. 125-133
Copp, 2002
J.B. Copp
The Cost Simulation benchmark: Description and simulator manual (COST Action 624 and Action 682)
Office for Official Publications od the European Union, (2002)
Diehl, 2007
S. Diehl
Estimation of the batch-settling flux function for an ideal suspension from only two experiments
Chemical Engineering Science, 62 (2007 sep), pp. 4589-4601 http://dx.doi.org/10.1016/j.ces.2007.05.025
Ekama and Barnard, 1997
Ekama, G.A., Barnard, J.L., GÃ14nthert, F.W., Krebs, P., McCorquodale, J.A., Parker, D.S.,Wahlberg, E.J., 1997. Secondary settling tanks: Theory, modelling, design and operation. iawq scientific and technical report no. 6. Tech. rep., International Association on Water Quality, England.
Gernaey et al., 2006
K.V. Gernaey,C. Rosen,U. Jeppsson
Wwtp dynamic disturbance modelling - an essential module for long-term benchmarking development
Water science and technology, 53 (2006), pp. 225-234
Gomez-Quintero et al., 2000
C. Gomez-Quintero,I. Queinnec,J. Babary
A reduced nonlinear model of an activated sludge process
En: In Proc. of the International Symposium on Advanced Control on Chemical Processes (ADCHEM), Italy, (2000 June 14–16)
Henze et al., 1987
M. Henze,C. Grady,W. Gujer,G. Marais,T. Matsuo
Activated sludge model 1. Scientific and Technical Report No. 1
IAWQ, (1987)
Henze et al., 2002
M. Henze,W. Gujer,T. Mino,M. van Loosedrecht
Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Reports, No. 9
IWA Publishing, (2002)
Henze et al., 2008
M. Henze,M. van Loosdrecht,D. Brdjanovic,G. Ekama
Biological Wastewater Treatment: Principles, Modelling and Design
IWA Publishing, (2008)
Ingildsen, 2002
Ingildsen, P., 2002. Realising full-scale control in wastewater treatment systems using in situ nutrient sensors. Ph.D. thesis, Department of Industrial Electrical Engineering and Automation.
Jeppsson, 1993
U. Jeppsson
On the verifiability of the activated sludge dynamics. Master's thesis
IEA, Lund Institute of Technology, (1993)
Jeppsson, 1996
U. Jeppsson
Modelling aspects of wastewater treatment processes. Ph.D. thesis
Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology, (1996)
Jeppsson and Olsson, 1993
U. Jeppsson,G. Olsson
Reduced order models for on-line parameter identification of the activated sludge process
Water Science and Technology, 28 (1993), pp. 173-183
Jeppsson and Pons, 2004
U. Jeppsson,M.-N. Pons
The COST benchmark simulation model - current state and future perspective
Control Engineering Practice, 12 (2004 mar), pp. 299-304 http://dx.doi.org/10.1016/j.conengprac.2003.07.001
Jeppsson et al., 2007
U. Jeppsson,M.-N. Pons,I. Nopens,J. Alex,J. Copp,K. Gernaey,C. Rosen,J.-P. Steyer,P. Vanrolleghem
Benchmark Simulation Model No 2: general protocol and exploratory case studies
Water Science and Technology, 56 (2007), pp. 67-78 http://dx.doi.org/10.2166/wst.2007.714
Jeppsson et al., 2006
U. Jeppsson,C. Rosen,J. Alex,J. Copp,K. Gernaey,M.-N. Pons,P. Vanrolleghem
Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs
Water Science and Technology, 53 (2006), pp. 287-295
Julien et al., 1998
S. Julien,J. Babary,P. Lessard
Theoretical and practical identifiability of a reduced order model in an activated sludge process doing nitrification and denitrification
Water science and technology, 37 (1998), pp. 309-316
Julien et al., 1999
S. Julien,P. Lessard,J. Barbary
A reduced order model for control of a single reactor activated sludge process
Mathematical and Computer Modelling of Dynamical Systems, 5 (1999), pp. 337-350
Kabouris and Georgakakos, 1992
J. Kabouris,A. Georgakakos
Accounting for different time scales in activated sludge process control
Water Science and Technology, 26 (1992), pp. 1381-1390
Kokotovic et al., 1976
P.V. Kokotovic,R. O’malley,P. Sannuti
Singular perturbations and order reduction in control theory : an overview
Automatica, 12 (1976), pp. 123-132
Kynch, 1952
G.J. Kynch
A theory of sedimentation
Transactions of the Faraday Society, 48 (1952), pp. 166 http://dx.doi.org/10.1039/tf9524800166
Lee et al., 2002
T. Lee,F. Wang,R. Newell
Robust model-order reduction of complex biological processes
Journal of Process Control, 12 (2002 oct), pp. 807-821 http://dx.doi.org/10.1016/s0959-1524(02)00006-9
Marsili-Libelli, 1989
S. Marsili-Libelli
Modelling, identification and control of the activated sludge process
Lignocellulosic Materials, (1989), pp. 89-148
Nopens et al., 2009
I. Nopens,D.J. Batstone,J.B. Copp,U. Jeppsson,E. Volcke,J. Alex,P.A. Vanrolleghem
An ASM/ADM model interface for dynamic plant-wide simulation
Water Research, 43 (2009 apr), pp. 1913-1923 http://dx.doi.org/10.1016/j.watres.2009.01.012
Nopens et al., 2010
I. Nopens,L. Benedetti,U. Jeppsson,M.-N. Pons,J. Alex,J.B. Copp,K.V. Gernaey,C. Rosen,J.-P. Steyer,P.A. Vanrolleghem
Benchmark Simulation Model No 2: finalisation of plant layout and default control strategy
Water Science and Technology, 62 (2010), pp. 1967-1974 http://dx.doi.org/10.2166/wst.2010.044
Olsson and Jeppsson, 2006
G. Olsson,U. Jeppsson
Plant-wide control: dream, necessity or reality?
Water science and technology, 53 (2006), pp. 121-129
Olsson and Newell, 1999
G. Olsson,B. Newell
Wastewater treatment systems: modelling, diagnosis and control
IWA publishing, (1999)
Petty, 1975
C. Petty
Continuous sedimentation of a suspension with a nonconvex flux law
Chemical Engineering Science, 30 (1975), pp. 1451-1458 http://dx.doi.org/10.1016/0009-2509(75)85022-6
Robuste, 1990
J. Robuste
Modelització i identificació del proces de fangs activats
Universidad Autónoma Barcelona, (1990)
Ph. D. thesis
Rosen et al., 2006
C. Rosen,D. Vrecko,K. Gernaey,M. Pons,U. Jeppsson
Implementing ADM1 for plant-wide benchmark simulations in matlab/simulink
Water Science & Technology, 54 (2006 aug), pp. 11 http://dx.doi.org/10.2166/wst.2006.521
Smets et al., 2003
I.Y. Smets,J.V. Haegebaert,R. Carrette,J.F. Van Impe
Linearization of the activated sludge model asm1 for fast and reliable predictions
Water research, 37 (2003), pp. 1831-1851 http://dx.doi.org/10.1016/S0043-1354(02)00580-8
Steffens et al., 1997
M. Steffens,P. Lant,R. Newell
A systematic approach for reducing complex biological wastewater treatment models
Water Research, 31 (1997 mar), pp. 590-606 http://dx.doi.org/10.1016/s0043-1354(96)00273-4
Takacs et al., 1991
I. Takacs,G.G. Patry,D. Nolasco
A dynamic model of the clarification-thickening process
Water Research, 25 (1991 oct), pp. 1263-1271 http://dx.doi.org/10.1016/0043-1354(91)90066-y
Vitasovic, 1989
Vitasovic, Z., 1989. Continuous settler operation: a dynamic model. Ch. Dynamic Modelling and Expert Systems in Wastewater Engineering, pp. 59-81.
Zhao et al., 1995
H. Zhao,S. Isaacs,H. Søeberg,M. Kümmel
An analysis of nitrogen removal and control strategies in an alternating activated sludge process
Water research, 29 (1995), pp. 535-544
Autor para correspondencia. (Ramon Vilanova Ramon.Vilanova@uab.cat)
Copyright © 2017