Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y S...
Información de la revista
Vol. 14. Núm. 3.
Páginas 217-233 (Julio - Septiembre 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4420
Vol. 14. Núm. 3.
Páginas 217-233 (Julio - Septiembre 2017)
Open Access
Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación
Control and operation of wastewater treatment plants (I)
Visitas
4420
Ramon Vilanova
Autor para correspondencia
Ramon.Vilanova@uab.cat

Autor para correspondencia.
, Ignacio Santín, Carles Pedret
Departamento de Telecomunicaciones y de Ingeniería de Sistemas, Escuela de Ingeniería, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Este trabajo constituye la primera parte de una revisión de la problemática del control y operación de estaciones depuradoras de aguas residuales (EDAR) para el tratamiento de agua residual urbana. En esta primera parte nos centramos en el modelado y simulación mientras que la segunda parte se dedica en exclusiva al control y operación. Esta depuración se realiza, mayoritariamente, mediante procesos biológicos, concretamente, mediante el denominado proceso de fangos activados. El hecho de tratar con un proceso biológico conlleva una elevada complejidad tanto desde el punto de vista de modelado como, por supuesto, de control y operación. Para poder ubicar convenientemente el problema, se presenta una caracterización de las aguas residuales urbanas y las necesidades de depuración asociadas. El control y operación descansan en gran medida en la disponibilidad de modelos apropiados y, ya hoy en día, de una elevada fiabilidad. Se presentan los modelos de la familia ASM; poniendo especial énfasis en el ASM1 que se describe en más detalle; así como las características de otras unidades de proceso como el decantador y su interconexión. En estos modelos destacan los entornos BSM de benchmarking, que han sido esenciales para todo el posterior desarrollo en la actividad de control y operación.

Palabras clave:
Estaciones depuradoras de aguas residuales
proceso de fangos activados
benchmarking
Abstract

This tutorial is the first part of a review of the problems arising with the control and operation of wastewater treatment plants (WWTP) for urban wastewater. This first part will concentrate in the modelling and simulation steps whereas the second part will cover the control and operation issues. This treatment is carried out, mainly, by biological processes. Specifically, by the so-called activated sludge process. Dealing with a biological process entails a high complexity both from the viewpoint of modelling and, of course, from what matters to control and operation. In order to properly locate the problem, a characterisation of the urban wastewater and the associated treatment needs are presented. Control and operation rely heavily on the availability of appropriate models and, today, of proved reliability. The models of the ASM family are presented; placing special emphasis on the ASM1 that is described in more detail; as well as the characteristics of other process units like the settler and its interconnection. These models highlight the BSM benchmarking environments, which have been essential for all subsequent development in the control and operation activity.

Keywords:
wastewater treatment plants
activated sludge process
benchmarking
Referencias
[Alex et al., 2008]
J. Alex, L. Benedetti, J. Copp, K. Gernaey, U. Jeppsson, I. Nopens, M.-N. Pons, J.-P. Steyer, P. Vanrolleghem.
Benchmark simulation model no 1 (bsm1). Tech. rep..
Lund University, (2008),
[Batstone et al., 2002]
D.J. Batstone, J. Keller, I. Angelidaki, S. Kalyuzhnyi, S. Pavlostathis, A. Rozzi, W. Sanders, H. Siegrist, V. Vavilin.
The iwa anaerobic digestion model no 1 (adm1).
Water Science and Technology, 45 (2002), pp. 65-73
[Cadet et al., 2015]
C. Cadet, V.D.S. Martins, D. Dochain.
Dynamic modeling of clarifier-thickeners for the control of wastewater treatment plants: a critical analysis.
En: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), IEEE., (2015 oct), http://dx.doi.org/10.1109/icstcc.2015.7321354
[Carstensen et al., 1995]
J. Carstensen, P. Haffemoës, H. Madsen.
Statistical identification of monod-kinetic parameters from on-line measurements.
Water Science and Technology, 31 (1995), pp. 125-133
[Copp, 2002]
J.B. Copp.
The Cost Simulation benchmark: Description and simulator manual (COST Action 624 and Action 682).
Office for Official Publications od the European Union, (2002),
[Diehl, 2007]
S. Diehl.
Estimation of the batch-settling flux function for an ideal suspension from only two experiments.
Chemical Engineering Science, 62 (2007 sep), pp. 4589-4601
[Ekama and Barnard, 1997]
Ekama, G.A., Barnard, J.L., GÃ14nthert, F.W., Krebs, P., McCorquodale, J.A., Parker, D.S.,Wahlberg, E.J., 1997. Secondary settling tanks: Theory, modelling, design and operation. iawq scientific and technical report no. 6. Tech. rep., International Association on Water Quality, England.
[Gernaey et al., 2006]
K.V. Gernaey, C. Rosen, U. Jeppsson.
Wwtp dynamic disturbance modelling - an essential module for long-term benchmarking development.
Water science and technology, 53 (2006), pp. 225-234
[Gomez-Quintero et al., 2000]
C. Gomez-Quintero, I. Queinnec, J. Babary.
A reduced nonlinear model of an activated sludge process.
En: In Proc. of the International Symposium on Advanced Control on Chemical Processes (ADCHEM), Italy, (2000 June 14–16),
[Henze et al., 1987]
M. Henze, C. Grady, W. Gujer, G. Marais, T. Matsuo.
Activated sludge model 1. Scientific and Technical Report No. 1.
IAWQ, (1987),
[Henze et al., 2002]
M. Henze, W. Gujer, T. Mino, M. van Loosedrecht.
Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Reports, No. 9.
IWA Publishing, (2002),
[Henze et al., 2008]
M. Henze, M. van Loosdrecht, D. Brdjanovic, G. Ekama.
Biological Wastewater Treatment: Principles, Modelling and Design.
IWA Publishing, (2008),
[Ingildsen, 2002]
Ingildsen, P., 2002. Realising full-scale control in wastewater treatment systems using in situ nutrient sensors. Ph.D. thesis, Department of Industrial Electrical Engineering and Automation.
[Jeppsson, 1993]
U. Jeppsson.
On the verifiability of the activated sludge dynamics. Master's thesis.
IEA, Lund Institute of Technology, (1993),
[Jeppsson, 1996]
U. Jeppsson.
Modelling aspects of wastewater treatment processes. Ph.D. thesis.
Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology, (1996),
[Jeppsson and Olsson, 1993]
U. Jeppsson, G. Olsson.
Reduced order models for on-line parameter identification of the activated sludge process.
Water Science and Technology, 28 (1993), pp. 173-183
[Jeppsson and Pons, 2004]
U. Jeppsson, M.-N. Pons.
The COST benchmark simulation model - current state and future perspective.
Control Engineering Practice, 12 (2004 mar), pp. 299-304
[Jeppsson et al., 2007]
U. Jeppsson, M.-N. Pons, I. Nopens, J. Alex, J. Copp, K. Gernaey, C. Rosen, J.-P. Steyer, P. Vanrolleghem.
Benchmark Simulation Model No 2: general protocol and exploratory case studies.
Water Science and Technology, 56 (2007), pp. 67-78
[Jeppsson et al., 2006]
U. Jeppsson, C. Rosen, J. Alex, J. Copp, K. Gernaey, M.-N. Pons, P. Vanrolleghem.
Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs.
Water Science and Technology, 53 (2006), pp. 287-295
[Julien et al., 1998]
S. Julien, J. Babary, P. Lessard.
Theoretical and practical identifiability of a reduced order model in an activated sludge process doing nitrification and denitrification.
Water science and technology, 37 (1998), pp. 309-316
[Julien et al., 1999]
S. Julien, P. Lessard, J. Barbary.
A reduced order model for control of a single reactor activated sludge process.
Mathematical and Computer Modelling of Dynamical Systems, 5 (1999), pp. 337-350
[Kabouris and Georgakakos, 1992]
J. Kabouris, A. Georgakakos.
Accounting for different time scales in activated sludge process control.
Water Science and Technology, 26 (1992), pp. 1381-1390
[Kokotovic et al., 1976]
P.V. Kokotovic, R. O’malley, P. Sannuti.
Singular perturbations and order reduction in control theory : an overview.
Automatica, 12 (1976), pp. 123-132
[Kynch, 1952]
G.J. Kynch.
A theory of sedimentation.
Transactions of the Faraday Society, 48 (1952), pp. 166
[Lee et al., 2002]
T. Lee, F. Wang, R. Newell.
Robust model-order reduction of complex biological processes.
Journal of Process Control, 12 (2002 oct), pp. 807-821
[Marsili-Libelli, 1989]
S. Marsili-Libelli.
Modelling, identification and control of the activated sludge process.
Lignocellulosic Materials, (1989), pp. 89-148
[Nopens et al., 2009]
I. Nopens, D.J. Batstone, J.B. Copp, U. Jeppsson, E. Volcke, J. Alex, P.A. Vanrolleghem.
An ASM/ADM model interface for dynamic plant-wide simulation.
Water Research, 43 (2009 apr), pp. 1913-1923
[Nopens et al., 2010]
I. Nopens, L. Benedetti, U. Jeppsson, M.-N. Pons, J. Alex, J.B. Copp, K.V. Gernaey, C. Rosen, J.-P. Steyer, P.A. Vanrolleghem.
Benchmark Simulation Model No 2: finalisation of plant layout and default control strategy.
Water Science and Technology, 62 (2010), pp. 1967-1974
[Olsson and Jeppsson, 2006]
G. Olsson, U. Jeppsson.
Plant-wide control: dream, necessity or reality?.
Water science and technology, 53 (2006), pp. 121-129
[Olsson and Newell, 1999]
G. Olsson, B. Newell.
Wastewater treatment systems: modelling, diagnosis and control.
IWA publishing, (1999),
[Petty, 1975]
C. Petty.
Continuous sedimentation of a suspension with a nonconvex flux law.
Chemical Engineering Science, 30 (1975), pp. 1451-1458
[Robuste, 1990]
J. Robuste.
Modelització i identificació del proces de fangs activats.
Universidad Autónoma Barcelona, (1990),
Ph. D. thesis
[Rosen et al., 2006]
C. Rosen, D. Vrecko, K. Gernaey, M. Pons, U. Jeppsson.
Implementing ADM1 for plant-wide benchmark simulations in matlab/simulink.
Water Science & Technology, 54 (2006 aug), pp. 11
[Smets et al., 2003]
I.Y. Smets, J.V. Haegebaert, R. Carrette, J.F. Van Impe.
Linearization of the activated sludge model asm1 for fast and reliable predictions.
Water research, 37 (2003), pp. 1831-1851
[Steffens et al., 1997]
M. Steffens, P. Lant, R. Newell.
A systematic approach for reducing complex biological wastewater treatment models.
Water Research, 31 (1997 mar), pp. 590-606
[Takacs et al., 1991]
I. Takacs, G.G. Patry, D. Nolasco.
A dynamic model of the clarification-thickening process.
Water Research, 25 (1991 oct), pp. 1263-1271
[Vitasovic, 1989]
Vitasovic, Z., 1989. Continuous settler operation: a dynamic model. Ch. Dynamic Modelling and Expert Systems in Wastewater Engineering, pp. 59-81.
[Zhao et al., 1995]
H. Zhao, S. Isaacs, H. Søeberg, M. Kümmel.
An analysis of nitrogen removal and control strategies in an alternating activated sludge process.
Water research, 29 (1995), pp. 535-544
Opciones de artículo
Herramientas