x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2016

0,500
© Thomson Reuters, Journal Citation Reports, 2016

Indexada en:

SCIE /JCR, Scopus, ScienceDirect

Métricas

  • Factor de Impacto: 0,500(2016)
  • 5-años Factor de Impacto: 0,344
  • SCImago Journal Rank (SJR):0,212
  • Source Normalized Impact per Paper (SNIP):0,308

© Thomson Reuters, Journal Citation Reports, 2016

Revista Iberoamericana de Automática e Informática industrial 2017;14:299-306 - DOI: 10.1016/j.riai.2017.03.001
Análisis Cinemático del Manipulador Paralelo 4-PRUR Mediante la Teoría de Tornillos
Kinematics by Means of Screw Theory of The 4-PRUR Parallel Manipulator
Jaime Gallardo-Alvaradoa, , Mario A. Garcia-Murillob,,
a Departamento de Ingeniería Mecánica, Instituto Tecnológico de Celaya, 38010 Celaya, Gto., México
b Departamento de Ingeniería Mecánica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, 36885 Salamanca, Gto., México
Resumen

En este trabajo se presenta el análisis cinemático de un robot paralelo generador del movimiento de Schönflies por medio de la teoría de tornillos. Como un paso intermedio, el análisis de posición se obtiene en forma semi-cerrada con base en las coordenadas de dos puntos de la plataforma móvil. Esta estrategia requiere de sólo un marco de referencia, evitando así el cálculo de la matriz de rotación. Las ecuaciones entrada-salida de velocidad y de aceleración se obtienen sistemáticamente recurriendo a la teoría de tornillos recíprocos. Para ello, el robot se modela como si fuese un manipulador paralelo de seis grados de libertad gracias a la incorporación de pares cinemáticos ficticios que conectan las extremidades con la plataforma fija y una cadena cinemática virtual con la finalidad de aplicar sin restricciones el álgebra de Lie se(3) del grupo Euclideo SE(3). El análisis de singularidades se aborda con base en la ecuación entrada-salida de velocidad. Se incluyen ejemplos numéricos que muestran la aplicación del método.

Abstract

In this work the kinematics of a parallel manipulator performing Schönflies motion is investigated by means of the theory of screws. As an intermediate step, the displacement analysis is reported in semi-closed form solution based on the coordinates of two points embedded in the moving platform. This strategy allows to employ only one reference frame avoiding the computation of the rotation matrix. The input-output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. To this aim, the robot is treated as a six-degrees-of-freedom parallel manipulator incorporating pseudo kinematic pairs connecting the limbs to the fixed platform and one virtual kinematic chain in order to apply without restrictions the Lie algebra se(3) of the Euclidean group SE(3). The singularity analysis is investigated based on the input-output equation of velocity. Numerical examples are included in order to show the application of the method.

Palabras clave
Robot paralelo, movimientos de Schönflies, Teoría de tornillos, Cinemática
Keywords
Parallel robot, Schönflies motion, Screw theory, Kinematics
Referencias
Alessandro y Rosario, 2014
C. Alessandro,S. Rosario
Elastodynamic optimization of a 3T1R parallel manipulator
Mechanism and Machine Theory, 73 (2014), pp. 184-196
Altuzarra et al., 2011
O. Altuzarra,C. Pinto,B. Sandru,A. Hernandez
Optimal dimensioning for parallel manipulators: Workspace, dexterity, and energy
Journal of Mechanical Design, 133 (2011), pp. 041007
Amine et al., 2012
S. Amine,M.T. Masouleh,S. Caro,P. Wenger,C. Gosselin
Singularity conditions of 3T1R parallel manipulators with identical limb structures
Journal of Mechanisms and Robotics, 4 (2012), pp. 011011
Angeles et al., 2006a
J. Angeles,S. Caro,W. Khan,A. Morozov
The design and prototyping of an innovative schönflies motion generator
Proceedings of the Institution of Mechanical Engineers. Part C, 220 (2006), pp. 935-944
Angeles et al., 2006b
J. Angeles,S. Caro,W. Khan,A. Morozov
Kinetostatic design of an innovative schönflies-motion generator Proceedings of the Institution of Mechanical Engineers, Part C
Journal of Mechanical Engineering Science, 220 (2006), pp. 935-943
Bonev et al., 2003
I.A. Bonev,D. Zlatanov,C.M. Gosselin
Singularity analysis of 3-DOF planar parallel mechanisms via screw theory
Journal of Mechanical Design, 125 (2003), pp. 573-581
Cao et al., 2016
Y. Cao,H. Chen,Y. Qin,K. Liu,S. Ge,J. Zhu,K. Wang,J. Yu,W. Ji,H. Zhou
Type synthesis of fully-decoupled three-rotational and one-translational parallel mechanisms
Int J Adv Robot Syst, 13 (2016), pp. 79
Cervantes-Sánchez et al., 2016
J.J. Cervantes-Sánchez,J.M. Rico-Martínez,V.H. Pérez-Muñoz
An integrated study of the workspace and singularity for a schönflies parallel manipulator
Journal of applied research and technology, 14 (2016), pp. 9-37
Chen et al., 2009
Chen, Q., Li, Q., Wu, C., Hu, X., Huang, Z., June 2009. Mobility analysis of 4-RPRPR and 4-RRRPR parallel mechanisms with bifurcation of schoenflies motion by screw theory. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. pp. 279-284.
Choi y Ryu, 2012
H.-B. Choi,J. Ryu
Singularity analysis of a four degree-of-freedom parallel manipulator based on an expanded 6× 6 jacobian matrix
Mechanism and Machine Theory, 57 (2012), pp. 51-61
Clavel, 1988
R. Clavel
Delta, a fast robot with parallel geometry. In: Proceedings 18th international symposyum on industrial robots
IFS Publications, Switzerland, (April 1988)pp. 91-100
Corves et al., 2016
B. Corves,J. Brinker,M. Lorenz,M. Wahle
Design methodology for translational parallel manipulators exhibiting actuation redundancy
Proceedings of the Institution of Mechanical Engineers, Part C, 230 (2016), pp. 425-436
Gallardo-Alvarado, 2014
J. Gallardo-Alvarado
A simple method to solve the forward displacement analysis of the general six-legged parallel manipulator
Robotics and Computer-Integrated Manufacturing, 30 (2014), pp. 55-61
Gallardo-Alvarado, 2016
J. Gallardo-Alvarado
Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory
Springer International Publishing Switzerland, (2016)
J, 1999
V. J
Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation
ACM Trans Math Soft, 25 (1999), pp. 251-276
Kang et al., 2015
L. Kang,S.-M. Oh,W. Kim,B.-J. Yi
Design of a new gravity balanced parallel mechanism with schönflies motion
Proceedings of the Institution of Mechanical Engineers, Part C, (2015), http://dx.doi.org/10.1177/0954406215605862
Kim et al., 2014
S.M. Kim,K. Shin,B.-J. Yi,W. Kim
Development of a novel two-limbed parallel mechanism having schönflies motion
Proceedings of the Institution of Mechanical Engineers, Part C, (2014),
0954406214532633
Kim et al., 2015
S.M. Kim,K. Shin,B.-J. Yi,W. Kim
Development of a novel two-limbed parallel mechanism having schönflies motion
Proceedings of the Institution of Mechanical Engineers, Part C, 229 (2015), pp. 136-154
Kim et al., 2013
S.M. Kim,B.-J. Yi,W. Kim
Forward kinematic singularity avoiding design of a schönflies motion generator by asymmetric attachment of sub-chains
International Journal of Control, Automation and Systems, 11 (2013), pp. 116-126
Lee, 2013
Lee, P.-C., 2013. One novel isoconstrained parallel robot with schoenfliesmotion. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. V06BT07A005-V06BT07A005.
Lee y Lee, 2016
P.-C. Lee,J.-J. Lee
On the kinematics of a new parallel mechanism with schoenflies motion
Robotica, 34 (2016), pp. 2056-2070
Liu et al., 2012
S. Liu,T. Huang,J. Mei,X. Zhao,P. Wang,D.G. Chetwynd
Optimal design of a 4-DOF SCARA type parallel robot using dynamic performance indices and angular constraints
Journal of Mechanisms and Robotics, 4 (2012), pp. 031005
Makino y Furuya, 1982
Makino, H., Furuya, N., 1982. Scara robot and its family. In: Proc. 3rd Int. Conf. on Assembly Automation. pp. 433-444.
Masouleh et al., 2011a
M.T. Masouleh,C. Gosselin,M.H. Saadatzi,X. Kong,H.D. Taghirad
Kinematic analysis of 5-RPUR (3T2R) parallel mechanisms
Meccanica, 46 (2011), pp. 131-146
Masouleh et al., 2011b
Masouleh, M.T., Walter, D.R., Husty, M., Gosselin, C., 2011b. Solving the forward kinematic problem of 4-DOF parallel mechanisms (3T1R) with identical limb structures and revolute actuators using the linear implicitization algorithm. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. 969-978.
Nurahmi et al., 2016
L. Nurahmi,S. Caro,P. Wenger,J. Schadlbauer,M. Husty
Reconfiguration analysis of a 4-RUU parallel manipulator
Mechanism and Machine Theory, 96 (2016), pp. 269-289
Pierrot et al., 2009
F. Pierrot,V. Nabat,O. Company,S. Krut,P. Poignet
Optimal design of a 4-dof parallel manipulator: from academia to industry
IEEE Transactions on Robotics, 25 (2009), pp. 213-224
Richard et al., 2007
P.-L. Richard,C.M. Gosselin,X. Kong
Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator
Journal of Mechanical Design, 129 (2007), pp. 611-616
Rolland, 1999
L. Rolland
The manta and the kanuk: Novel 4-dof parallel mechanisms for industrial handling
Proc. of ASME Dynamic Systems and Control Division IMECE, 99 (1999), pp. 831-844
Salgado et al., 2008
O. Salgado,O. Altuzarra,V. Petuya,A. Hernández
Synthesis and design of a novel 3T1R fully-parallel manipulator
Journal of Mechanical Design, 130 (2008), pp. 042305
Schönflies, 1887
A. Schönflies
Über gruppen von bewegungen
Mathematische Annalen, 28 (1887), pp. 319-342
Solazzi et al., 2014
Solazzi, M., Gabardi, M., Frisoli, A., Bergamasco, M., 2014. Kinematics analysis and singularity loci of a 4-UPU parallel manipulator. In: Advances in Robot Kinematics. Springer, pp. 467-474.
Tsai, 1999
L.-W. Tsai
Robot analysis: the mechanics of serial and parallel manipulators
John Wiley & Sons, (1999)
Varshovi-Jaghargha et al., 2014
Varshovi-Jaghargha, P., Naderia, D., Tale-Masoulehb, M., 2014. Forward kinematic problem of three 4-DOF parallel mechanisms (4-PRUR1, 4-PRUR2 and 4-PUU) with identical limb structures performing 3T1R motion pattern. Scientia Iranica B.
Wu, 2016
G. Wu
Kinematic analysis and optimal design of a wall-mounted four-limb parallel schönflies-motion robot for pick-and-place operations
Journal of Intelligent & Robotic Systems, (2016), pp. 1-15 http://dx.doi.org/10.3390/genes8060168
Xie y Liu, 2015
F. Xie,X.-J. Liu
Design and development of a high-speed and high-rotation robot with four identical arms and a single platform
Journal of Mechanisms and Robotics, 7 (2015), pp. 041015
Xie y Liu, 2016
F. Xie,X.-J. Liu
Analysis of the kinematic characteristics of a high-speed parallel robot with schönflies motion: Mobility, kinematics, and singularity
Frontiers of Mechanical Engineering, 11 (2016), pp. 135-143
Yi et al., 2013
B.-J. Yi,S.M. Kim,H.K. Kwak,W. Kim
Multi-task oriented design of an asymmetric 3T1R type 4-DOF parallel mechanism
Proceedings of the Institution of Mechanical Engineers, Part C, 227 (2013), pp. 2236-2255
Zhao et al., 2006
J.-S. Zhao,Y.-Z. Fu,K. Zhou,Z.-J. Feng
Mobility properties of a schoenflies-type parallel manipulator
Robotics and Computer-Integrated Manufacturing, 22 (2006), pp. 124-133
Autor para correspondencia. (Mario A. Garcia-Murillo garcia.mario@ugto.mx)
Copyright © 2017