Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Aplicación de los métodos moleculares al diagnóstico y el estudio epidemioló...
Información de la revista
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 15-25 (Julio 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 15-25 (Julio 2008)
Acceso a texto completo
Aplicación de los métodos moleculares al diagnóstico y el estudio epidemiológico de las infecciones respiratorias causadas por virus
Application of molecular methods in the diagnosis and epidemiological study of viral respiratory infections
Visitas
3591
Francisco Pozo
Autor para correspondencia
pacopozo@isciii.es

Correspondencia: Laboratorio de Gripe y Virus Respiratorios. Centro Nacional de Microbiología. Ctra. de Pozuelo, km 2. 28220 Majadahonda. Madrid. España.
, Inmaculada Casas, Guillermo Ruiz, Ana Falcón, Pilar Pérez-Breña
Laboratorio de Gripe y Virus Respiratorios. Centro Nacional de Microbiología. Instituto de Salud Carlos III. Majadahonda. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Hasta la fecha se han identificado más de 200 virus pertenecientes a 6 familias taxonómicas diferentes asociados con la infección del tracto respiratorio humano. La utilización generalizada de métodos moleculares en los laboratorios de microbiología clínica no sólo ha aportado grandes ventajas al diagnóstico de estas infecciones, sino también está permitiendo profundizar en el conocimiento de la enfermedad y el comportamiento epidemiológico de los virus causantes. Esta tecnología incrementa de manera notable el rendimiento de detección de virus en las muestras respiratorias, debido a su elevada sensibilidad en comparación con las técnicas clásicas y a la posibilidad de identificar virus no cultivables o de crecimiento fastidioso en las líneas celulares habituales, lo que permite realizar el diagnóstico etiológico con mayor rapidez. Sin embargo, también comporta algunos inconvenientes, como son detectar virus que se encuentran colonizando la mucosa respiratoria de personas asintomáticas, o en secreciones de pacientes que ya se han recuperado de una infección pasada, a consecuencia de excreción prolongada de éstos. La secuenciación de los productos obtenidos en la reacción de amplificación genómica permite caracterizar de forma adicional los virus detectados mediante su genotipado, realizar estudios de epidemiología molecular e identificar resistencias a determinados antivirales, por citar sólo algunos ejemplos.

Palabras clave:
Diagnóstico molecular
Epidemiología molecular
Reacción en cadena de la polimerasa
Gripe
Virus respiratorios
Infección respiratoria

To date, more than two hundred viruses, belonging to six different taxonomic families, have been associated with human respiratory tract infection. The widespread incorporation of molecular methods into clinical microbiology laboratories has not only led to notable advances in the etiological diagnosis of viral respiratory infections but has also increased insight into the pathology and epidemiological profiles of the causative viruses. Because of their high sensitivity, molecular techniques markedly increase the efficiency of viral detection in respiratory specimens, particularly those that fail to propagate successfully in common cell cultures, thus allowing more rapid etiologic diagnosis. However, there are also some disadvantages in the use of these new technologies such as detection of viruses that merely colonize the respiratory tract of healthy people, or those found in the nasopharyngeal secretions of patients who have recovered from respiratory infections, due to longterm viral shedding, when the viruses are unlikely to act as pathogens. Additionally, sequencing of the amplification products allows further characterization of detected viruses, including molecular epidemiology, genotyping, or detection of antiviral resistance, to cite only a few examples.

Key words:
Molecular diagnosis
Molecular Epidemiology
PCR
Influenza
Respiratory viruses
Respiratory infection
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.A. García-Rodríguez, M.J. Fresnadillo.
Microbiología de la infección respiratoria pediátrica.
An Esp Pediatr, 56 (2002), pp. 2-8
[2.]
M.T. Coiras, P. Pérez-Breña, M.L. García, I. Casas.
Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay.
J Med Virol, 69 (2003), pp. 132-144
[3.]
A.B. Smith, V. Mock, R. Melear, P. Colarusso, D.E. Willis.
Rapid detection of influenza A and B viruses in clinical specimens by Light Cycler real time RTPCR.
J Clin Virol, 28 (2003), pp. 51-58
[4.]
L.J. Van Elden, M. Nijhuis, P. Schipper, R. Schuurman, A.M. Van Loon.
Simultaneous detection of influenza viruses A and B using real-time quantitative PCR.
J Clin Microbiol, 39 (2001), pp. 196-200
[5.]
C. Moore, S. Hibbitts, N. Owen, S.A. Corden, G. Harrison, J. Fox, et al.
Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A.
J Med Virol, 74 (2004), pp. 619-628
[6.]
S.K. Poddar.
Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RTPCR) and agarose gel electrophoresis.
J Virol Methods, 99 (2002), pp. 63-70
[7.]
B. Schweiger, I. Zadow, R. Heckler, H. Timm, G. Pauli.
Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples.
J Clin Microbiol, 38 (2000), pp. 1552-1558
[8.]
P.L. Quan, G. Palacios, O.J. Jabado, S. Conlan, D.L. Hirschberg, F. Pozo, et al.
Detection of respiratory viruses and subtype identification of influenza A viruses by GreeneChipResp oligonucleotide microarray.
J Clin Microbiol, 45 (2007), pp. 2359-2364
[9.]
S. Zou, J. Han, L. Wen, Y. Liu, K. Cronin, S.H. Lum, et al.
Human influenza A virus (H5N1) detection by a novel multiplex PCR typing method.
J Clin Microbiol, 45 (2007), pp. 1889-1892
[10.]
L.A. Cooper, K. Subbarao.
A simple restriction fragment length polymorphism-based strategy that can distinguish the internal genes of human H1N1, H3N2, and H5N1 influenza A viruses.
J Clin Microbiol, 38 (2000), pp. 2579-2583
[11.]
R. Saito, H. Oshitani, H. Masuda, H. Suzuki.
Detection of amantadine-resistant influenza A virus strains in nursing homes by PCR-restriction fragment length polymorphism analysis with nasopharyngeal swabs.
J Clin Microbiol, 40 (2002), pp. 84-88
[12.]
B. Hoffmann, T. Harder, E. Starick, K. Depner, O. Werner, M. Beer.
Rapid and highly sensitive pathotyping of avian influenza A H5N1 virus by using real-time reverse transcription-PCR.
J Clin Microbiol, 45 (2007), pp. 600-603
[13.]
R.A. Bright, D.K. Shay, B. Shu, N.J. Cox, A.I. Klimov.
Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States.
[14.]
Y. Matsuzaki, C. Abiko, K. Mizuta, K. Sugawara, E. Takashita, Y. Muraki, et al.
A nationwide epidemic of influenza C virus infection in Japan in 2004.
J Clin Microbiol, 45 (2007), pp. 783-788
[15.]
M.L. García-García, C. Calvo, P. Pérez-Breña, J.M. De Cea, B. Acosta, I. Casas.
Prevalence and clinical characteristics of human metapneumovirus infections in hospitalized infants in Spain.
Pediatr Pulmonol, 41 (2006), pp. 863-871
[16.]
B.G. Van den Hoogen, J.C. De Jong, J. Groen, T. Kuiken, R. De Groot, R.A. Fouchier, et al.
A newly discovered human pneumovirus isolated from young children with respiratory tract disease.
Nat Med, 7 (2001), pp. 719-724
[17.]
O.C. Tablan, L.J. Anderson, R. Besser, C. Bridges, R. Hajjeh.
Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee.
MMWR Recomm Rep, 53 (2004), pp. 1-36
[18.]
O. García, M. Martín, J. Dopazo, J. Arbiza, S. Frabasile, J. Russi, et al.
Evolutionary pattern of human respiratory syncytial virus (subgroup A): cocirculating lineages and correlation of genetic and antigenic changes in the G glycoprotein.
J Virol, 68 (1994), pp. 5448-5459
[19.]
B.G. Van den Hoogen, S. Herfst, L. Sprong, P.A. Cane, E. Forleo-Neto, R.L. De Swart, et al.
Antigenic and genetic variability of human metapneumoviruses.
Emerg Infect Dis, 10 (2004), pp. 658-666
[20.]
P.L. Collins, J.E. Crowe.
Respiratory syncytial virus and metapneumovirus.
pp. 1601-1646
[21.]
J. Reina, F. Ferres, E. Alcoceba, A. Mena, E.R. De Gopegui, J. Figuerola.
Comparison of different cell lines and incubation times in the isolation by the shell vial culture of human metapneumovirus from pediatric respiratory samples.
J Clin Virol, 40 (2007), pp. 46-49
[22.]
E. Percivalle, A. Sarasini, L. Visai, M.G. Revello, G. Gerna.
Rapid detection of human metapneumovirus strains in nasopharyngeal aspirates and shell vial cultures by monoclonal antibodies.
J Clin Microbiol, 43 (2005), pp. 3443-3446
[23.]
M.R. López-Huertas, I. Casas, B. Acosta-Herrera, M.L. García, M.T. Coiras, P. Pérez-Breña.
Two RT-PCR based assays to detect human metapneumovirus in nasopharyngeal aspirates.
J Virol Methods, 129 (2005), pp. 1-7
[24.]
J.V. Williams, P.A. Harris, S.J. Tollefson, L.L. Halburnt-Rush, J.M. Pingsterhaus, K.M. Edwards, et al.
Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children.
N Engl J Med, 350 (2004), pp. 443-450
[25.]
K. Pabbaraju, S. Wong, T. McMillan, B.E. Lee, J.D. Fox.
Diagnosis and epidemiological studies of human metapneumovirus using real-time PCR.
J Clin Virol, 40 (2007), pp. 186-192
[26.]
M. Montes, D. Vicente, O. Esnal, G. Cilla, E. Pérez-Trallero.
A PCR-restriction fragment length polymorphism assay to genotype human metapneumovirus.
Clin Microbiol Infect, 14 (2008), pp. 91-93
[27.]
J.C. Aguilar, M.P. Pérez-Breña, M.L. García, N. Cruz, D.D. Erdman, J.E. Echevarría.
Detection and identification of human parainfluenza viruses 1, 2, 3, and 4 in clinical samples of pediatric patients by multiplex reverse transcription-PCR.
J Clin Microbiol, 38 (2000), pp. 1191-1195
[28.]
J.E. Echevarría, D.D. Erdman, E.M. Swierkosz, B.P. Holloway, L.J. Anderson.
Simultaneous detection and identification of human parainfluenza viruses 1, 2, and 3 from clinical samples by multiplex PCR.
J Clin Microbiol, 36 (1998), pp. 1388-1391
[29.]
J.E. Echevarría, D.D. Erdman, H.C. Meissner, L. Anderson.
Rapid molecular epidemiologic studies of human parainfluenza viruses based on direct sequencing of amplified DNA from a multiplex RT-PCR assay.
J Virol Methods, 88 (2000), pp. 105-109
[30.]
K.E. Templeton, S.A. Scheltinga, M.F. Beersma, A.C. Kroes, E.C. Claas.
Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4.
J Clin Microbiol, 42 (2004), pp. 1564-1569
[31.]
S. Hibbitts, A. Rahman, R. John, D. Westmoreland, J.D. Fox.
Development and evaluation of NucliSens basic kit NASBA for diagnosis of parainfluenza virus infection with ‘end-point’ and ‘real-time’ detection.
J Virol Methods, 108 (2003), pp. 145-155
[32.]
A. Hu, M. Colella, P. Zhao, F. Li, J.S. Tam, R. Rappaport, et al.
Development of a real-time RT-PCR assay for detection and quantitation of parainfluenza virus 3.
J Virol Methods, 130 (2005), pp. 145-148
[33.]
M. Zambon, T. Bull, C.J. Sadler, J.M. Goldman, K.N. Ward.
Molecular epidemiology of two consecutive outbreaks of parainfluenza 3 in a bone marrow transplant unit.
J Clin Microbiol, 36 (1998), pp. 2289-2293
[34.]
M.L. García, J.C. Aguilar, J.E. Echeverría, C. Calvo, I. Pinto, M. Ordobás, et al.
Parainfluenza virus type 4 infections.
An Esp Pediatr, 57 (2002), pp. 116-120
[35.]
M.L. Vachon, N. Dionne, E. Leblanc, D. Moisan, M.G. Bergeron, G. Boivin.
Human parainfluenza type 4 infections, Canada.
Emerg Infect Dis, 12 (2006), pp. 1755-1758
[36.]
S.K. Lau, W.K. To, P.W. Tse, A.K. Chan, P.C. Woo, H.W. Tsoi, et al.
Human parainfluenza virus 4 outbreak and the role of diagnostic tests.
J Clin Microbiol, 43 (2005), pp. 4515-4521
[37.]
A. Avellón, P. Pérez, J.C. Aguilar, R. Lejarazu, J.E. Echevarría.
Rapid and sensitive diagnosis of human adenovirus infections by a generic polymerase chain reaction.
J Virol Methods, 92 (2001), pp. 113-120
[38.]
B. Chmielewicz, A. Nitsche, B. Schweiger, H. Ellerbrok.
Development of a PCR-based assay for detection, quantification, and genotyping of human adenoviruses.
Clin Chem, 51 (2005), pp. 1365-1373
[39.]
A.K. Adhikary, T. Inada, U. Banik, J. Numaga, N. Okabe.
Identification of subgenus C adenoviruses by fiber-based multiplex PCR.
J Clin Microbiol, 42 (2004), pp. 670-673
[40.]
S. Wong, K. Pabbaraju, X.L. Pang, B.E. Lee, J.D. Fox.
Detection of a broad range of human adenoviruses in respiratory tract samples using a sensitive multiplex real-time PCR assay.
J Med Virol, 80 (2008), pp. 856-865
[41.]
I. Casas, A. Avellón, M. Mosquera, O. Jabado, J.E. Echevarría, R.H. Campos, et al.
Molecular identification of adenoviruses in clinical samples by analyzing a partial hexon genomic region.
J Clin Microbiol, 43 (2005), pp. 6176-6182
[42.]
K. Ebner, M. Suda, F. Watzinger, T. Lion.
Molecular detection and quantitative analysis of the entire spectrum of human adenoviruses by a two-reaction real-time PCR assay.
J Clin Microbiol, 43 (2005), pp. 3049-3053
[43.]
D. Lamson, N. Renwick, V. Kapoor, Z. Liu, G. Palacios, J. Ju, et al.
MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004-2005.
J Infect Dis, 194 (2006), pp. 1398-1402
[44.]
M.T. Coiras, J.C. Aguilar, M.L. García, I. Casas, P. Pérez-Breña.
Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays.
J Med Virol, 72 (2004), pp. 484-495
[45.]
L. Andreoletti, M. Lesay, A. Deschildre, V. Lambert, A. Dewilde, P. Wattre.
Differential detection of rhinoviruses and enteroviruses RNA sequences associated with classical immunofluorescence assay detection of respiratory virus antigens in nasopharyngeal swabs from infants with bronchiolitis.
J Med Virol, 61 (2000), pp. 341-346
[46.]
P. Halonen, E. Rocha, J. Hierholzer, B. Holloway, T. Hyypia, P. Hurskainen, et al.
Detection of enteroviruses and rhinoviruses in clinical specimens by PCR and liquid-phase hybridization.
J Clin Microbiol, 33 (1995), pp. 648-653
[47.]
A. Arola, J. Santti, O. Ruuskanen, P. Halonen, T. Hyypia.
Identification of enteroviruses in clinical specimens by competitive PCR followed by genetic typing using sequence analysis.
J Clin Microbiol, 34 (1996), pp. 313-318
[48.]
S. Kares, M. Lonnrot, P. Vuorinen, S. Oikarinen, S. Taurianen, H. Hyoty.
Real-time PCR for rapid diagnosis of entero- and rhinovirus infections using LightCycler.
J Clin Virol, 29 (2004), pp. 99-104
[49.]
A.C. Andeweg, T.M. Bestebroer, M. Huybreghs, T.G. Kimman, J.C. De Jong.
Improved detection of rhinoviruses in clinical samples by using a newly developed nested reverse transcription-PCR assay.
J Clin Microbiol, 37 (1999), pp. 524-530
[50.]
C. Steininger, S.W. Aberle, T. Popow-Kraupp.
Early detection of acute rhinovirus infections by a rapid reverse transcription-PCR assay.
J Clin Microbiol, 39 (2001), pp. 129-133
[51.]
X. Lu, B. Holloway, R.K. Dare, J. Kuypers, S. Yagi, J.V. Williams, et al.
Real-time reverse transcription-PCR assay for comprehensive detection of human rhinoviruses.
J Clin Microbiol, 46 (2008), pp. 533-539
[52.]
H. Dagher, H. Donninger, P. Hutchinson, R. Ghildyal, P. Bardin.
Rhinovirus detection: comparison of real-time and conventional PCR.
J Virol Methods, 117 (2004), pp. 113-121
[53.]
I. Casas, P.E. Klapper, G.M. Cleator, J.E. Echevarría, A. Tenorio, J.M. Echevarría.
Two different PCR assays to detect enteroviral RNA in CSF samples from patients with acute aseptic meningitis.
J Med Virol, 47 (1995), pp. 378-385
[54.]
I. Casas, A. Tenorio, J.M. Echevarría, P.E. Klapper, G.M. Cleator.
Detection of enteroviral RNA and specific DNA of herpesviruses by multiplex genome amplification.
J Virol Methods, 66 (1997), pp. 39-50
[55.]
F. Pozo, I. Casas, A. Tenorio, G. Trallero, J.M. Echevarría.
Evaluation of a commercially available reverse transcription-PCR assay for diagnosis of enteroviral infection in archival and prospectively collected cerebrospinal fluid specimens.
J Clin Microbiol, 36 (1998), pp. 1741-1745
[56.]
A.M. Costa, D. Lamb, S.M. Garland, S.N. Tabrizi.
Evaluation of LightCycler as a platform for nucleic acid sequence-based amplification (NASBA) in real-time detection of enteroviruses.
Curr Microbiol, 56 (2008), pp. 80-83
[57.]
M.L. Landry, R. Garner, D. Ferguson.
Comparison of the NucliSens Basic kit (Nucleic Acid Sequence-Based Amplification) and the Argene Biosoft Enterovirus Consensus Reverse Transcription-PCR assays for rapid detection of enterovirus RNA in clinical specimens.
J Clin Microbiol, 41 (2003), pp. 5006-5010
[58.]
M.S. Oberste, K. Maher, A.J. Williams, N. Dybdahl-Sissoko, B.A. Brown, M.S. Gookin, et al.
Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses.
J Gen Virol, 87 (2006), pp. 119-128
[59.]
G. Palacios, I. Casas, A. Tenorio, C. Freire.
Molecular identification of enterovirus by analyzing a partial VP1 genomic region with different methods.
J Clin Microbiol, 40 (2002), pp. 182-192
[60.]
T. Smura, S. Blomqvist, A. Paananen, T. Vuorinen, Z. Sobotova, V. Bubovica, et al.
Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5’-untranslated region evolution.
J Gen Virol, 88 (2007), pp. 2520-2526
[61.]
T.P. Smura, N. Junttila, S. Blomqvist, H. Norder, S. Kaijalainen, A. Paananen, et al.
Enterovirus 94, a proposed new serotype in human enterovirus species D.
J Gen Virol, 88 (2007), pp. 849-858
[62.]
M.S. Oberste, K. Maher, W.A. Nix, S.M. Michele, M. Uddin, D. Schnurr, et al.
Molecular identification of 13 new enterovirus types, EV79-88, EV97, and EV100-101, members of the species Human Enterovirus B.
[63.]
M.S. Oberste, S.M. Michele, K. Maher, D. Schnurr, D. Cisterna, N. Junttila, et al.
Molecular identification and characterization of two proposed new enterovirus serotypes, EV74 and EV75.
J Gen Virol, 85 (2004), pp. 3205-3212
[64.]
G. Palacios, I. Casas, D. Cisterna, G. Trallero, A. Tenorio, C. Freire.
Molecular epidemiology of echovirus 30: temporal circulation and prevalence of single lineages.
J Virol, 76 (2002), pp. 4940-4949
[65.]
S.K. Lau, C.C. Yip, H.W. Tsoi, R.A. Lee, L.Y. So, Y.L. Lau, et al.
Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children.
J Clin Microbiol, 45 (2007), pp. 3655-3664
[66.]
P. McErlean, L.A. Shackelton, S.B. Lambert, M.D. Nissen, T.P. Sloots, I.M. Mackay.
Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis.
J Clin Virol, 39 (2007), pp. 67-75
[67.]
C. Savolainen, S. Blomqvist, M.N. Mulders, T. Hovi.
Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70.
J Gen Virol, 83 (2002), pp. 333-340
[68.]
K. Pyrc, B. Berkhout, L. Van der Hoek.
Identification of new human coronaviruses.
Expert Rev Anti Infect Ther, 5 (2007), pp. 245-253
[69.]
J. Garbino, S. Crespo, J.D. Aubert, T. Rochat, B. Ninet, C. Deffernez, et al.
A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection.
Clin Infect Dis, 43 (2006), pp. 1009-1015
[70.]
V.C. Cheng, S.K. Lau, P.C. Woo, K.Y. Yuen.
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.
Clin Microbiol Rev, 20 (2007), pp. 660-694
[71.]
J. Druce, T. Tran, H. Kelly, M. Kaye, D. Chibo, R. Kostecki, et al.
Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia, 2002-2003.
J Med Virol, 75 (2005), pp. 122-129
[72.]
C.J. Birch, H.J. Clothier, A. Seccull, T. Tran, M.C. Catton, S.B. Lambert, et al.
Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia.
Epidemiol Infect, 133 (2005), pp. 273-277
[73.]
P.C. Woo, S.K. Lau, H.W. Tsoi, Y. Huang, R.W. Poon, C.M. Chu, et al.
Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia.
J Infect Dis, 192 (2005), pp. 1898-1907
[74.]
S.B. Lambert, K.M. Allen, J.D. Druce, C.J. Birch, I.M. Mackay, J.B. Carlin, et al.
Community epidemiology of human metapneumovirus, human coronavirus NL63, and other respiratory viruses in healthy preschool-aged children using parent-collected specimens.
Pediatrics, 120 (2007), pp. e929-e937
[75.]
N.M. Kaplan, W. Dove, S.A. Abd-Eldayem, A.F. Abu-Zeid, H.E. Shamoon, C.A. Hart.
Molecular epidemiology and disease severity of respiratory syncytial virus in relation to other potential pathogens in children hospitalized with acute respiratory infection in Jordan.
J Med Virol, 80 (2008), pp. 168-174
[76.]
D. Chibo, C. Birch.
Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains.
J Gen Virol, 87 (2006), pp. 1203-1208
[77.]
G.P. Zhao.
SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era.
Philos Trans R Soc Lond B Biol Sci, 362 (2007), pp. 1063-1081
[78.]
T. Allander, M.T. Tammi, M. Eriksson, A. Bjerkner, A. Tiveljung-Lindell, B. Andersson.
Cloning of a human parvovirus by molecular screening of respiratory tract samples.
Proc Natl Acad Sci USA, 102 (2005), pp. 12891-12896
[79.]
T. Allander.
Human bocavirus.
J Clin Virol, 41 (2008), pp. 29-33
[80.]
J. Longtin, M. Bastien, R. Gilca, E. Leblanc, G. De Serres, M.G. Bergeron, et al.
Human bocavirus infections in hospitalized children and adults.
Emerg Infect Dis, 14 (2008), pp. 217-221
[81.]
M.L. García, C. Calvo, F. Pozo, P. Pérez-Breña, S. Quevedo, T. Bracamonte, et al.
Human bocavirus detection in nasopharyngeal aspirates of children without clinical symptoms of respiratory infection.
Pediatr Infect Dis J, 27 (2008), pp. 358-360
[82.]
D. Kesebir, M. Vázquez, C. Weibel, E.D. Shapiro, D. Ferguson, M.L. Landry, et al.
Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus.
J Infect Dis, 194 (2006), pp. 1276-1282
[83.]
T. Allander, T. Jarti, S. Gupta, H.G. Niesters, P. Lehtinen, R. Osterback, et al.
Human bocavirus and acute wheezing in children.
Clin Infect Dis, 44 (2007), pp. 904-910
[84.]
F. Neske, K. Blessing, F. Tollmann, J. Schubert, A. Rethwilm, H.W. Kreth, et al.
Real-time PCR for diagnosis of human bocavirus infections and phylogenetic analysis.
J Clin Microbiol, 45 (2007), pp. 2116-2122
[85.]
M. Kleines, S. Scheithauer, A. Rackowitz, K. Ritter, M. Hausler.
High prevalence of human bocavirus detected in young children with severe acute lower respiratory tract disease by use of a standard PCR protocol and a novel realtime PCR protocol.
J Clin Microbiol, 45 (2007), pp. 1032-1034
[86.]
X. Lu, M. Chittaganpitch, S.J. Olsen, I.M. Mackay, T.P. Sloots, A.M. Fry, et al.
Real-time PCR assays for detection of bocavirus in human specimens.
J Clin Microbiol, 44 (2006), pp. 3231-3235
[87.]
D. Vicente, G. Cilla, M. Montes, E.G. Pérez-Yarza, E. Pérez-Trallero.
Human bocavirus, a respiratory and enteric virus.
Emerg Infect Dis, 13 (2007), pp. 636-637
[88.]
J.I. Lee, J.Y. Chung, T.H. Han, M.O. Song, E.S. Hwang.
Detection of human bocavirus in children hospitalized because of acute gastroenteritis.
J Infect Dis, 196 (2007), pp. 994-997
[89.]
F. Pozo, M.L. García, C. Calvo, I. Cuesta, P. Pérez-Breña, I. Casas.
High incidence of human bocavirus infection in children in Spain.
J Clin Virol, 40 (2007), pp. 224-228
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos