metricas
covid
Buscar en
Revista Colombiana de Reumatología
Toda la web
Inicio Revista Colombiana de Reumatología Biomarcadores proteicos en lupus neuropsiquiátrico
Información de la revista
Vol. 19. Núm. 3.
Páginas 158-171 (Septiembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 19. Núm. 3.
Páginas 158-171 (Septiembre 2012)
Acceso a texto completo
Biomarcadores proteicos en lupus neuropsiquiátrico
Protein Biomarkers in Neuropsychiatric Lupus
Visitas
3408
Nini Johanna Pedroza Díaz1,
Autor para correspondencia
joha27@gmail.com

Correspondencia.
, Blanca Lucía Ortiz Reyes1, Gloria María Vásquez Duque1
1 Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Colombia
Este artículo ha recibido
Información del artículo
Resumen

El lupus eritematoso sistémico es una enfermedad crónica, autoinmune, en la cual factores genéticos, epigenéticos, ambientales, hormonales e inmunológicos han demostrado tener un papel. El lupus eritematoso sistémico afecta prácticamente a todos los órganos con manifestaciones cutáneas, musculoesqueléticas, cardiopulmonares, renales y neuropsiquiátricas, estas últimas agrupadas como lupus neuropsiquiátrico cuya prevalencia varía entre 12-95%. Las manifestaciones neuropsiquiátricas ocupan un lugar importante en la morbilidad y mortalidad de la enfermedad y, por ende, se han asociado a un pobre pronóstico. Hasta la fecha el diagnóstico de lupus neuropsiquiátrico se basa en las características clínicas, utilizando la nomenclatura y descripción de caso del Colegio Americano de Reumatología-1999, sin embargo, la inespecificidad de estos síndromes clínicos hace aún difícil el diagnóstico. Esta dificultad es consecuencia de la etiopatogenia compleja, la gran heterogeneidad de presentaciones clínicas, el curso impredecible de la enfermedad y, adicionalmente, las pruebas de laboratorio y de imaginología médica utilizadas no son contundentes para el diagnóstico. Es por ello que ha sido imperativa la búsqueda de biomar, entre los que se han reportado auto-anticuerpos y otras proteínas. Sin embargo, estos reportes requieren de estudios complementarios para ser validados como prueba diagnóstica y así poder ser utilizados en la práctica clínica. Se presenta, entonces, una revisión de tema acerca de algunos de estos biomarcadores evaluados hasta el momento.

Palabras clave:
Biomarcadores
lupus neuropsiquiátrico
líquido cefalorraquídeo
proteómica
Summary

Systemic lupus erythematosus is a chronic auto-immune disease in which genetic, epigenetic, environmental, hormonal and immunological are involved. Systemic lupus erythematosus affects almost all organs with clinical manifestations such as skin disorders, musculoskeletal, cardio, renal and neuropsychiatric compromise, the latter neuropsychiatric lupus, has a prevalence that varies between 12-95%. Neuropsychiatric manifestations have been associated with morbidity and mortality of the disease so these account for a poor prognosis. To date, the diagnosis of neuropsychiatric lupus is performed using the nomenclature and description of case reported by the American College of Rheumatology (ACR) in 1999, however, the use of this nomenclature has not been effective for the diagnosis of neuropsychiatric lupus because the complex pathogenesis, heterogeneity of clinical presentations, an unpredictable course of the disease and the laboratory tests and imaging used are not conclusive. For these reason it is therefore imperative the search of biomarkers, among which are reported auto-antibodies and other proteins. However, these reports require additional studies to be validated and that they can be used in clinical practice. This paper is a review about these biomarkers evaluated until today.

Key words:
Biomarkers
neuropsychiatric systemic lupus erythematosus
cerebrospinal fluid
proteomics
El Texto completo está disponible en PDF
Referencias
[1.]
E. Hess.
Lupus the clinical Entity.
Lupus Molecular and Celular Pathogenesis, 1st, pp. 1-12
[2.]
R. Cervera, G. Espinosa.
Lupus around the world.
Acta Reu Port, 32 (2007), pp. 99-101
[3.]
J. Anaya, G.J. Tobón, T.R. Pineda, J. Font, R. Cervera.
Lupus Eritematoso Sistémico.
Autoinmunidad y Enfermedad Autoinmune, 1st, pp. 256-269
[4.]
R. Gualtierotti, M. Biggioggero, A.E. Penatti, P.L. Meroni.
Up on the pathogenesis of systemic lupus erythematosus.
Autoimmun Rev, 10 (2010), pp. 3-7
[5.]
S. Wang, I. Adrianto, G.B. Wiley, C.J. Lessard, J.A. Kelly, A.J. Adler, et al.
A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus.
Genes Immun, 13 (2012), pp. 380-387
[6.]
G.D.S. Cunninghame, D.L. Morris, T.R. Bhangale, L.A. Criswell, A.C. Syvanen, L. Ronnblom, et al.
Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythe.
[7.]
M. Teruel, J.E. Martín, N. Ortego-Centeno, J. Jiménez-Alonso, et al.
Sánchez-Roman J, de Ramón E, Novel association of acid phosphatase locus 1*C allele with systemic lupus erythematosus.
Hum Immunol, 73 (2012), pp. 107-110
[8.]
G.C. Tsokos.
Systemic lupus erythematosus.
N Engl J Med, 365 (2011), pp. 2110-2121
[9.]
J.C. Crispin, S.N. Liossis, K. Kis-Toth, L.A. Lieberman, V.C. Kyttaris, Y.T. Juang, et al.
Pathogenesis of human systemic lupus erythematosus: recent advances.
Trends Mol Med, 16 (2010), pp. 47-57
[10.]
B.M. Javierre, H. Hernando, E. Ballestar.
Environmental triggers and epigenetic deregulation in autoimmune disease.
Discov Med, 12 (2011), pp. 535-545
[11.]
S.Y. Lin, S.C. Hsieh, Y.C. Lin, C.N. Lee, M.H. Tsai, L.C. Lai, et al.
A whole genome methylation analysis of systemic lupus erythematosus: hypomethylation of the IL10 and IL1R2 promoters is associated with disease activity.
Genes Immun, 13 (2012), pp. 214-220
[12.]
L.M. Pennell, C.L. Galligan, E.N. Fish.
Sex affects immunity.
J Autoimmun, 38 (2012), pp. 82-91
[13.]
A.H. Sawalha, L. Wang, A. Nadig, E.C. Somers, W.J. McCune, M.L. Cohort, et al.
Sex-specific differences in the relationship between genetic susceptibility. T cell DNA demethylation and lupus flare severity.
J Autoimmun, 38 (2012), pp. 216-222
[14.]
F.M. Strickland, A. Hewagama, Q. Lu, A. Wu, R. Hinderer, R. Webb, et al.
Environmental exposure, estrogen and two X chromosomes are required for disease development in an epigenetic model of lupus.
J Autoimmun, 38 (2012), pp. J135-J143
[15.]
P. Guarnizo.
VG. polimorfismos de citoquinas en lupus eritematoso sistémico revista colombiana de reumatología, 11 (2004), pp. 209-216
[16.]
J. Kwiecinski, M. Klak, E. Trysberg, K. Blennow, A. Tarkowski, T. Jin.
Relationship between elevated cerebrospinal fluid levels of plasminogen activator inhibitor 1 and neuronal destruction in patients with neuropsychiatric systemic lupus erythematosus.
Arthritis Rheum, 60 (2009), pp. 2094-2101
[17.]
A. Popescu, A.H. Kao.
Neuropsychiatric systemic lupus erythe.
Curr Neuropharmacol, 9 (2011), pp. 449-457
[18.]
G.K. Bertsias, D.T. Boumpas.
Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations.
Nat Rev Rheumatol, 6 (2010), pp. 358-367
[19.]
R.M. Carbotte, S.D. Denburg, J.A. Denburg.
Prevalence of cognitive impairment in systemic lupus erythematosus.
J Nerv Ment Dis, 174 (1986), pp. 357-364
[20.]
S.D. Denburg, R.M. Carbotte, J.A. Denburg.
Cognitive impair in systemic lupus erythematosus: a neuropsychological study of individual and group deficits.
J Clin Exp Neurop, 9 (1987), pp. 323-339
[21.]
J. Singer, J.A. Denburg.
Diagnostic criteria for neuropsychia systemic lupus erythematosus: the results of a consensus meeting The Ad Hoc Neuropsychiatric Lupus Workshop Group.
J Rheumatol, 17 (1990), pp. 1397-1402
[22.]
The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes.
Ar Rheum, 42 (1999), pp. 599-608
[23.]
H. Ainiala, A. Hietaharju, J. Loukkola, J. Peltola, M. Korpela, R. Metsanoja, et al.
Validity of the new American College of Rheumatology criteria for neuropsychiatric lupus syndromes: a population-based evaluation.
Arthritis Rheum, 45 (2001), pp. 419-423
[24.]
G.S. Alarcón, L. Cianfrini, L.A. Bradley, M.L. Sánchez, K. Brooks, A.W. Friedman, et al.
Systemic lupus erythematosus in three ethnic groups X. Measuring cognitive impairment with the cognitive symptoms inventory.
Arthritis Rheum, 47 (2002), pp. 310-319
[25.]
J.A. Mikdashi, J.M. Esdaile, G.S. Alarcón, L. Crofford, B.J. Fessler, L. Shanberg, et al.
Proposed response criteria for neurocog impairment in systemic lupus erythematosus clinical trials.
Lupus, 16 (2007), pp. 418-425
[26.]
S. Monov, D. Monova.
Classification criteria for neuropsychia systemic lupus erythematosus: do they need a discussion?.
Hippokratia, 12 (2008), pp. 103-107
[27.]
G.K. Bertsias, J.P. Ioannidis, M. Aringer, E. Bollen, S. Bombardieri, I.N. Bruce, et al.
EULAR recommendations for the manage of systemic lupus erythematosus with neuropsychiatric manifestations: report of a task force of the EULAR stan committee for clinical affairs.
Ann Rheum Dis, 69 (2010), pp. 2074-2082
[28.]
J.G. Hanly, G. McCurdy, L. Fougere, J.A. Douglas, K. Thompson.
Neuropsychiatric events in systemic lupus erythematosus: attribution and clinical significance.
J Rheumatol, 31 (2004), pp. 2156-2162
[29.]
L.N. Moorthy, M.G. Peterson, M.J. Harrison, K.B. Onel, T.J. Lehman.
Quality of life in children with systemic lupus erythema: a review.
Lupus, 16 (2007), pp. 663-669
[30.]
H.E. Fragoso-Loyo, J. Sánchez-Guerrero.
Effect of severe neuropsychiatric manifestations on short-term damage in systemic lupus erythematosus.
J Rheumatol, 34 (2007), pp. 76-80
[31.]
A. Jonsen, A.A. Bengtsson, O. Nived, B. Ryberg, G. Sturfelt.
Outcome of neuropsychiatric systemic lupus erythematosus within a defined Swedish population: increased morbidity but low mortality.
Rheumatology (Oxford), 41 (2002), pp. 1308-1312
[32.]
F.B. Karassa, J.P. Ioannidis, K.A. Boki, G. Touloumi, M.I. Argyropou, K.A. Strigaris, et al.
Predictors of clinical outcome and radiologic progression in patients with neuropsychiatric manifestations of systemic lupus erythematosus.
Am J Med, 109 (2000), pp. 628-634
[33.]
J. Mikdashi, B. Handwerger.
Predictors of neuropsychiatric damage in systemic lupus erythematosus: data from the Maryland lupus cohort.
Rheumatology (Oxford), 43 (2004), pp. 1555-1560
[34.]
J.T. Sibley, W.P. Olszynski, W.E. Decoteau, M.B. Sundaram.
The incidence and prognosis of central nervous system disease in systemic lupus erythematosus.
J Rheumatol, 19 (1992), pp. 47-52
[35.]
C.C. Liu, J.M. Ahearn.
The search for lupus biomarkers.
Best Pract Res Clin Rheumatol, 23 (2009), pp. 507-523
[36.]
X. Fang, W.W. Zhang.
Affinity separation and enrichment methods in proteomic analysis.
J Proteomics, 71 (2008), pp. 284-303
[37.]
S.D. Patterson, R.H. Aebersold.
Proteomics: the first decade and beyond.
Nat Genet, 33 (2003), pp. 311-323
[38.]
Y.A. Goo, D.R. Goodlett.
Advances in proteomic prostate can biomarker discovery.
J Proteomics, 73 (2010), pp. 1839-1850
[39.]
Z. Xiao, D. Prieto, T.P. Conrads, T.D. Veenstra, H.J. Issaq.
Pro patterns: their potential for disease diagnosis.
Mol Cell Endocrinol, 230 (2005), pp. 95-106
[40.]
B.L. Wright, J.T. Lai, A.J. Sinclair.
Cerebrospinal fluid and lumbar puncture: a practical review.
J Neurol, 259 (2012), pp. 1530-1545
[41.]
D.A. Ballok.
Neuroimmunopathology in a murine model of neuropsychiatric lupus.
Brain Res Rev, 54 (2007), pp. 67-79
[42.]
A.C. Kroksveen, J.A. Opsahl, T.T. Aye, R.J. Ulvik, F.S. Berven.
Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics.
J Proteomics, 74 (2011), pp. 371-388
[43.]
J. Albrethsen.
The first decade of MALDI protein profiling: a lesson in translational biomarker research.
J Proteomics, 74 (2011), pp. 765-773
[44.]
M.M. Sidor, B. Sakic, P.M. Malinowski, D.A. Ballok, C.J. Oleschuk, J. Macri.
Elevated immunoglobulin levels in the cerebros fluid from lupus-prone mice.
J Neuroimmunol, 165 (2005), pp. 104-113
[45.]
L. Stojanovich, D. Smiljanich-Miljkovich, R. Omdal, B. Sakic.
Neuropsychiatric lupus and association with cerebrospinal fluid immunoglobulins: a pilot study.
Isr Med Assoc J, 11 (2009), pp. 359-362
[46.]
G. Zandman-Goddard, J. Chapman, Y. Shoenfeld.
Autoantibo involved in neuropsychiatric SLE and antiphospholipid syndrome.
Semin Arthritis Rheum, 36 (2007), pp. 297-315
[47.]
G.A. Bruyn.
Controversies in lupus: nervous system involve.
Ann Rheum Dis, 54 (1995), pp. 159-167
[48.]
T. Colasanti, F. Delunardo, P. Margutti, D. Vacirca, E. Piro, A. Sira, et al.
Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus.
J Neuroimmunol, 212 (2009), pp. 3-9
[49.]
S.K. Tin, Q. Xu, J. Thumboo, L.Y. Lee, C. Tse, K.Y. Fong.
Novel brain reactive autoantibodies: prevalence in systemic lupus erythematosus and association with psychoses and seizures.
J Neuroimmunol, 169 (2005), pp. 153-160
[50.]
R. Omdal, K. Brokstad, K. Waterloo, W. Koldingsnes, R. Jonsson, S.I. Mellgren.
Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors.
Eur J Neurol, 12 (2005), pp. 392-398
[51.]
C. Kowal, L.A. DeGiorgio, J.Y. Lee, M.A. Edgar, P.T. Huerta, B.T. Volpe, et al.
Human lupus autoantibodies against NMDA receptors mediate cognitive impairment.
Proc Natl Acad Sci U S A, 103 (2006), pp. 19854-19859
[52.]
H. Fragoso-Loyo, J. Cabiedes, A. Orozco-Narváez, L. Dávila-Maldonado, Y. Atisha-Fregoso, B. Diamond, et al.
Serum and cerebrospinal fluid autoantibodies in patients with neu lupus erythematosus Implications for diagnosis and pathogenesis.
[53.]
M.B. Lauvsnes, R. Omdal.
Systemic lupus erythematosus, the brain, and anti-NR2 antibodies.
J Neurol, 259 (2012), pp. 622-629
[54.]
L.A. DeGiorgio, K.N. Konstantinov, S.C. Lee, J.A. Hardin, B.T. Volpe, B. Diamond.
A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus.
Nat Med, 7 (2001), pp. 1189-1193
[55.]
R.K. Yu, Y.T. Tsai, T. Ariga.
Functional roles of gangliosides in neurodevelopment: an overview of recent advances.
Neuro Res, 37 (2012), pp. 1230-1244
[56.]
M. Labrador-Horrillo, F. Martínez-Valle, E. Gallardo, R. Rojas-García, J. Ordi-Ros, M. Vilardell.
Anti-ganglioside anti in patients with systemic lupus erythematosus and neurological manifestations.
Lupus, 21 (2012), pp. 611-615
[57.]
M. Galeazzi, P. Annunziata, G.D. Sebastiani, F. Bellisai, V. Cam, G.B. Ferrara, et al.
Anti-ganglioside antibodies in a large cohort of European patients with systemic lupus erythematosus: clinical, serological, and HLA class II gene associations European Concerted Action on the Immuno of SLE.
J Rheumatol, 27 (2000), pp. 135-141
[58.]
R.C. Williams, K. Sugiura, E.M. Tan.
Antibodies to microtu-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus.
Arthritis Rheum, 50 (2004), pp. 1239-1247
[59.]
C. Briani, M. Lucchetta, A. Ghirardello, E. Toffanin, S. Zampieri, S. Ruggero, et al.
Neurolupus is associated with anti-ribosomal P protein antibodies: an inception cohort study.
J Autoimmun, 32 (2009), pp. 79-84
[60.]
E. Toubi, Y. Shoenfeld, Clinical.
biological aspects of anti-P-ribosomal protein autoantibodies.
Autoimmun Rev, 6 (2007), pp. 119-125
[61.]
F.G. Nery, E.F. Borba, V.S. Viana, J.P. Hatch, J.C. Soares, E. Bonfa, et al.
Prevalence of depressive and anxiety disorders in systemic lupus erythematosus and their association with anti-ribosomal P antibodies.
Prog Neuropsychopharmacol Biol Psychiatry, 32 (2008), pp. 695-700
[62.]
F.B. Karassa, A. Afeltra, A. Ambrozic, D.M. Chang, F. De Keyser, A. Doria, et al.
Accuracy of anti-ribosomal P protein anti testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: an international meta-analysis.
Arthritis Rheum, 54 (2006), pp. 312-324
[63.]
F. Orosz, G. Wagner, K. Liliom, J. Kovacs, K. Baroti, M. Horanyi, et al.
Enhanced association of mutant triosephosphate isomerase to red cell membranes and to brain microtubules.
Proc Natl Acad Sci U S A, 97 (2000), pp. 1026-1031
[64.]
T. Sasajima, H. Watanabe, S. Sato, Y. Sato, H. Ohira.
Anti-triosephosphate isomerase antibodies in cerebrospinal fluid are associated with neuropsychiatric lupus.
J Neuroimmunol, 181 (2006), pp. 150-156
[65.]
H. Watanabe, T. Seino, Y. Sato.
Antibodies to triosephosphate isomerase in patients with neuropsychiatric lupus.
Biochem Biophys Res Commun, 321 (2004), pp. 949-953
[66.]
N.S. Lai, J.L. Lan.
Evaluation of cerebrospinal anticardiolipin antibodies in lupus patients with neuropsychiatric manifes.
Lupus, 9 (2000), pp. 353-357
[67.]
A. Afeltra, P. Garzia, A.P. Mitterhofer, M. Vadacca, S. Galluzzo, F. Del Porto, et al.
Neuropsychiatric lupus syndromes: relationship with antiphospholipid antibodies.
Neurology, 61 (2003), pp. 108-110
[68.]
J.G. Hanly, M.B. Urowitz, F. Siannis, V. Farewell, C. Gordon, S.C. Bae, et al.
Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: results from an international inception cohort study.
Arthritis Rheum, 58 (2008), pp. 843-853
[69.]
A.M. Borowoy, J.E. Pope, E. Silverman, P.R. Fortin, C. Pineau, C.D. Smith, et al.
Neuropsychiatric Lupus: The Prevalence and Autoantibody Associations Depend on the Definition: Results from the 1000 Faces of Lupus Cohort.
Semin Arthritis Rheum, 42 (2012), pp. 179-185
[70.]
H. Okamoto, A. Kobayashi, H. Yamanaka.
Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus.
J Biomed Biotechnol, 2010 (2010), pp. 268436
[71.]
L. Sun, H. Chen, C. Hu, P. Wang, Y. Li, J. Xie, et al.
Identify biomarkers of neuropsychiatric systemic lupus erythematosus by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with weak cation magnetic beads.
J Rheumatol, 38 (2011), pp. 454-461
[72.]
P. Steinacker, W. Rist, M. Swiatek-de-Lange, S. Lehnert, S. Jesse, A. Pabst, et al.
Ubiquitin as potential cerebrospinal fluid marker of Creutzfeldt-Jakob disease.
Proteomics, 10 (2010), pp. 81-89
[73.]
S.M. Sadrzadeh, J. Bozorgmehr.
Haptoglobin phenotypes in health and disorders.
Am J Clin Pathol, 121 (2004), pp. S97-S104
[74.]
J. Wassell.
Haptoglobin: function and polymorphism.
Clin Lab, 46 (2000), pp. 547-552
[75.]
E.J. Pavón, P. Muñoz, A. Lario, V. Longobardo, M. Carrascal, J. Abian, et al.
Proteomic analysis of plasma from patients with systemic lupus erythematosus: increased presence of haptoglobin alpha2 polypeptide chains over the alpha1 isoforms.
Proteomics, 6 (2006), pp. S282-S292
[76.]
D.B. Zimmer, E.H. Cornwall, A. Landar, W. Song.
The S100 protein family: history, function, and expression.
Brain Res Bull, 37 (1995), pp. 417-429
[77.]
X.Y. Yang, J. Lin, X.Y. Lu, X.Y. Zhao.
Expression of S100B protein levels in serum and cerebrospinal fluid with different forms of neuropsychiatric systemic lupus erythematosus.
Clin Rheumatol, 27 (2008), pp. 353-357
[78.]
J. Sen, A. Belli.
S100B in neuropathologic states: the CRP of the brain?.
J Neurosci Res, 85 (2007), pp. 1373-1380
[79.]
F.O. Akenami, M. Koskiniemi, M. Farkkila, A. Vaheri.
Cere fluid plasminogen activator inhibitor-1 in patients with neurological disease.
J Clin Pathol, 50 (1997), pp. 157-160
Copyright © 2012. Asociación Colombiana de Reumatología
Opciones de artículo