metricas
covid
Buscar en
Radiología (English Edition)
Toda la web
Inicio Radiología (English Edition) Functional imaging of tumors. Part 2
Información de la revista
Vol. 52. Núm. 3.
Páginas 208-220 (enero 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 52. Núm. 3.
Páginas 208-220 (enero 2009)
Update
Acceso a texto completo
Functional imaging of tumors. Part 2
Imagen funcional tumoral. Parte 2
Visitas
438
R. García Figueirasa,
Autor para correspondencia
gueiras@sergas.es

Corresponding author.
, A.R. Padhanib, J.C. Vilanovac, V. Gohb, C. Villalba Martína
a Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
b Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, England
c Girona Clinic, Santa Caterina Hospital, Girona, Spain
Este artículo ha recibido
Información del artículo
Abstract

Most advances in conventional diagnostic imaging techniques have focused on improving the spatial resolution and speed of acquisition of images or on new contrast agents. However, tumors are extremely complex biological models with a series of characteristics like hypoxia, metabolism, cellularity, angiogenesis, and functionality of the lymph nodes that are very important in oncology but cannot be adequately studied with these diagnostic imaging methods. In this article, we discuss the possible contributions of different functional imaging techniques based on computed tomography, magnetic resonance imaging, or positron emission tomography to obtain information about different biological processes and characteristics that are very important for diagnosing, staging, planning treatment, evaluating the response to treatment, and monitoring cancer patients outcomes, as well as for the development of new drugs.

Keywords:
Tumors
Magnetic resonance imaging
Functional
Angiogenesis
Pathological
Hypoxia
Cellular
Spectroscopy
Drug evaluation studies
Resumen

Los principales avances en el campo de las técnicas convencionales de imagen diagnóstica se habían centrado tanto en mejorar la resolución espacial y la velocidad de adquisición de los datos como en la introducción de nuevos medios de contraste. Sin embargo, los tumores representan modelos biológicos tremendamente complejos y existe una serie de características (hipoxia, metabolismo, celularidad, angiogénesis o funcionalismo de los ganglios linfáticos) de gran importancia en el campo de la oncología que no pueden estudiarse adecuadamente con estos métodos diagnósticos. En este trabajo se presenta la posible aportación de distintas técnicas de imagen funcional basadas en el uso de la tomografía computarizada, la resonancia magnética o la tomografía por emisión de positrones para obtener información de características y procesos biológicamente muy importantes para el diagnóstico, la estadifi cación, la planifi cación terapéutica, la valoración de respuesta o el seguimiento evolutivo de los pacientes oncológicos, así como para el desarrollo de nuevos fármacos.

Palabras clave:
Neoplasias
Resonancia magnética
Funcional
Angiogénesis
Patológica
Hipoxia
Celular
El Texto completo está disponible en PDF
References
[1.]
García Figueiras R, Padhani AR, Vilanova Busquets JC, Goh V, Villalba Martin C. Imagen funcional tumoral. Parte 1. Radiología.
[2.]
L. Gorospe Sarasúa, J. Echeveste Aizpurúa, S. Raman.
Positron-emission tomography/computed tomography: Artifacts and pitfalls in cancer patients.
Radiología, 48 (2006), pp. 189-204
[3.]
A. Maldonado.
Oncologic PET-CT: The importance of a multidisciplinary team.
Radiología, 51 (2009), pp. 6-14
[4.]
D.A. Torigian, S.S. Huang, M. Houseni, A. Alavi.
Functional imaging of cancer with emphasis on molecular techniques.
CA Cancer J Clin, 57 (2007), pp. 206-224
[5.]
T.D Poeppel, B.J. Krause, T.A. Heusner, C. Boy, A. Bockisch, G. Antoch.
PET/CT for the staging and follow-up of patients with malignancies.
Eur J Radiol, 70 (2009), pp. 382-392
[6.]
L.F. De Geus-Oei, W.J.G. Oyen.
Predictive and prognostic value of FDG-PET.
Cancer Imaging, 8 (2008), pp. 70-80
[7.]
J.M. Freire Macias, M. Pajares Vinardell.
Application clinique des nouveaux traceurs TEP en oncology. La vision d’un médecin nucléaire en Espagne.
Médecine Nucléaire, 32 (2008), pp. 546-551
[8.]
L. Kwock, J.K. Smith, M. Castillo, M.G. Ewend, F. Collichio, E. David, et al.
Clinical role of proton magnetic resonance spectroscopy in oncology: Brain, breast, and prostate cancer.
Lancet Oncol, 7 (2006), pp. 859-868
[9.]
J. Evelhoch, M. Garwood, D. Vigneron, M. Knopp, D. Sullivan, A. Menkens, et al.
Expanding the use of magnetic resonance in the assessment of tumor response to therapy: Workshop report.
Cancer Res, 65 (2005), pp. 7041-7044
[10.]
W. Moller-Hartmann, S. Herminghaus, T. Krings, G. Marquardt, H. Lanfermann, U. Pilatus, et al.
Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions.
Neuroradiology, 44 (2002), pp. 371-381
[11.]
C. Majós.
Magnetic resonance spectroscopy for diagnosing brain tumors.
Radiología, 47 (2005), pp. 1-12
[12.]
J.C. Vilanova, J. Comet, C. Barceló-Vidal, J. Barceló, E. López-Bonet, A. Maroto, et al.
Peripheral zone prostate cancer in patients with elevated PSA levels and low free-to-total PSA ratio: Detection with MR imaging and MR spectroscopy.
Radiology, 253 (2009), pp. 135-143
[13.]
K.L. Zakian, K. Sircar, H. Hricak, H.N. Chen, A. Shukla-Dave, S. Eberhardt, et al.
Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy.
Radiology, 234 (2005), pp. 804-814
[14.]
P. Stanwell, C. Mountford.
In vivo proton MR spectroscopy of the breast.
Radiographics, 27 (2007), pp. S253-S266
[15.]
S. Meisamy, P.J. Bolan, E.H. Baker, R.L. Bliss, E. Gulbahce, L.I. Everson, et al.
Neoadjuvant chemotherapy of locally advanced breast cancer: Predicting response with in vivo 1H MR spectroscopy. A pilot study at 4.0T.
Radiology, 233 (2004), pp. 424-431
[16.]
R. Katz-Brull, P.T. Lavin, R.E. Lenkinski.
Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions.
J Natl Cancer Inst, 94 (2002), pp. 1197-1203
[17.]
A.D. King, D.K. Yeung, A.T. Ahuja, S.F. Leung, G.M. Tse, A.C. Van Hasselt.
In vivo proton MR spectroscopy of primary and nodal nasopharyngeal carcinoma.
AJNR Am J Neuroradiol, 25 (2004), pp. 484-490
[18.]
A.D. King, D.K. Yeung, A.T. Ahuja, E.H. Yuen, S.F. Ho, G.M. Tse, et al.
Human cervical lymphadenopathy: Evaluation with in vivo 1H-MRS at 1.5T.
Clin Radiol, 60 (2005), pp. 592-598
[19.]
M.M. Mahon, A.D. Williams, W.P. Soutter, I.J. Cox, G.A. McIndoe, G.A. Coutts, et al.
1H magnetic resonance spectroscopy of invasive cervical cancer: An in vivo study with ex vivo corroboration.
NMR Biomed, 17 (2004), pp. 1-9
[20.]
L.H. Schwartz, J. Bogaerts, R. Ford, L. Shankar, P. Therasse, S. Gywther, et al.
Evaluation of lymph nodes with RECIST 1.1.
Eur J Cancer, 45 (2009), pp. 261-267
[21.]
P.O. Van Trappen, M.S. Pepper.
Lymphatic dissemination of tumour cells and the formation of micrometastases.
Lancet Oncol, 3 (2002), pp. 44-52
[22.]
G. Brown, C.J. Richards, M.W. Bourne, R.G. Newcombe, A.G. Radcliffe, N.S. Dallimore, et al.
Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison.
Radiology, 227 (2003), pp. 371-377
[23.]
C.S. Whittaker, A. Andy Coady, L. Culver, G. Rustin, M. Padwick, A.R. Padhani.
Diffusion-weighted MR imaging of female pelvic tumors: A pictorial review.
Radiographics, 29 (2009), pp. 759-778
[24.]
K. Holzapfel, S. Duetsch, C.L. Fauser, M. Eiber, E.J. Rummeny, J. Gaa.
Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes.
Eur J Radiol, 72 (2009), pp. 381-387
[25.]
V. Vandecaveye, F. De Keyzer, V. Van der Poorten, P. Dirix, E. Verbeken, S. Nuyts, et al.
Head and neck squamous cell carcinoma: Value of diffusion-weighted MR imaging for nodal staging.
Radiology, 251 (2009), pp. 134-146
[26.]
Kwee TC, Takahara T, Luijten PR, Nievelstein RAJ. ADC measurements of lymph nodes: Inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol. 2009. In press.
[27.]
B. Misselwitz.
MR contrast agents in lymph node imaging.
Eur J Radiol, 58 (2006), pp. 375-382
[28.]
M.G. Harisinghani, J. Barentsz, P.F. Hahn, W.M. Deserno, S. Tabatabaei, C.H. Van de Kaa, et al.
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
N Engl J Med, 348 (2003), pp. 2491-2499
[29.]
P. Narayanan, T. Iyngkaran, S.A. Sohaib, R.H. Reznek, A.G. Rockal.
Pearls and pitfalls of MR lymphography in gynecologic malignancy.
Radiographics, 29 (2009), pp. 1057-1071
[30.]
M. Saksena, M. Harisinghani, P. Hahn, J. Kim, A. Saokar, B. King, et al.
Comparison of lymphotropic nanoparticle-enhanced MRI sequences in patients with various primary cancers.
AJR Am J Roentgenol, 187 (2006), pp. W582-W588
[31.]
H.C. Thoeny, M. Triantafyllou, F.D. Birkhaeuser, J.M. Froehlich, D.W. Tshering, T. Binser, et al.
Combined ultrasmall superparamagnetic particles of iron oxide–enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients.
Eur Urol, 55 (2009), pp. 761-769
[32.]
P. Vapel, L. Harrison.
Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response.
[33.]
S. Rasheed, P.J. McDonald, J.M. Northover, T. Guenther.
Angiogenesis and hypoxic factors in colorectal cancer.
Pathol Res Pract, 204 (2008), pp. 501-510
[34.]
J.G. Rajendran, K.A. Krohn.
Imaging hypoxia and angiogenesis in tumors.
Radiol Clin North Am, 43 (2005), pp. 169-187
[35.]
A.R. Padhani, K.A. Krohn, J.S. Lewis, M. Alber.
Imaging oxygenation of human tumours.
Eur Radiol, 17 (2007), pp. 861-872
[36.]
M.A. Zahra, K.G. Hollingsworth, E. Sala, D.J. Lomas, L.T. Tan.
Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy.
Lancet Oncol, 8 (2007), pp. 63-74
[37.]
K. Newbold, I. Castellano, E. Charles-Edwards, D. Mears, A. Sohaib, M. Leach, et al.
An exploratory study into the role of dynamic contrast-enhanced magnetic resonance or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer.
Int J Radiation Oncology Biol Phys, 74 (2009), pp. 29-37
[38.]
P.J. Hoskin, D.M. Carnell, N.J. Taylor, R.E. Smith, J.J. Stirling, F.M. Daley, et al.
Hypoxia in prostate cancer: Correlation of BOLD-MRI with pimonidazole immunohistochemistry: Initial observations.
Int J Radiat Oncol Biol Phys, 68 (2007), pp. 1065-1071
[39.]
D. Thorwarth, S.M. Eschmann, J. Scheiderbauer, F. Paulsen, M. Alber.
Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer.
BMC Cancer, 5 (2005), pp. 152
[40.]
G. Komar, M. Seppänen, O. Eskola, P. Lindholm, T.J. Grönroos, S. Forsback, et al.
18F-EF5: A new PET tracer for imaging hypoxia in head and neck cancer.
J Nucl Med, 49 (2008), pp. 1944-1951
[41.]
K.A. Miles, R.E. Williams.
Warburg revisited: Imaging tumour blood flow and metabolism.
Cancer Imaging, 8 (2008), pp. 81-86
[42.]
V. Goh, S. Halligan, D.M. Wellsted, C.I. Bartram.
Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease?.
A pilot study. Eur Radiol, 19 (2009), pp. 79-89
[43.]
S.A. Reinsberg, G.S. Payne, S.F. Riches, S. Ashley, J.M. Brewster, V.A. Morgan, et al.
Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection.
AJR Am J Roentgenol, 188 (2007), pp. 91-98
[44.]
H.U. Kauzcor.
Multimodal imaging and computer assisted diagnosis for functional tumour characterization.
Cancer Imaging, 5 (2005), pp. 46-50
[45.]
E.A. Eisenhauer, P. Therasse, J. Bogaerts, L.H. Schwartz, D. Sargent, R. Ford, et al.
New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1).
Eur J Cancer, 45 (2009), pp. 228-247
[46.]
C.D. Marcus, V. Ladam-Marcus, C. Cucu, O. Bouché, L. Lucas, C. Hoeffel.
Imaging techniques to evaluate the response to treatment in oncology: Current standards and perspectives.
Crit Rev Oncol Hematol, 72 (2009), pp. 217-238
[47.]
I.M. Desar, C.M. Van Herpen, H.W. Van Laarhoven.
Beyond RECIST: Molecular and functional imaging techniques for evaluation of response to targeted therapy.
Cancer Treat Revs, 35 (2009), pp. 309-321
[48.]
S.M. Galbraith, R.J. Maxwell, M.A. Lodge, I.M. Tozer, J.N. Wilson, N.J. Jane Taylor, et al.
Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging.
J Clin Oncol, 21 (2003), pp. 2831-2842
[49.]
R.K. Jain.
Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy.
Science, 307 (2005), pp. 58-62
[50.]
B. Turkbey, H. Kobayashi, M. Ogawa, M. Bernardo, P.L. Choyke.
Imaging of tumor angiogenesis: Functional or targeted?.
AJR Am J Roetgenol, 193 (2009), pp. 304-313
[51.]
S. Gwyther, L. Schwartz.
How to assess anti-tumour efficacy by imaging techniques.
Eur J Cancer, 44 (2008), pp. 39-45
[52.]
M.V. Knopp, G. Brix, H.J. Junkermann, H.P. Sinn.
MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy.
Magn Reson Imaging Clin N Am, 2 (1994), pp. 633-658
[53.]
D.M. Koh, E. Scurr, D. Collins, B. Kanber, A. Norman, M.O. Leach, et al.
Predicting response of colorectal hepatic metastasis: Value of pretreatment apparent diffusion coefficients.
AJR Am J Roentgenol, 188 (2007), pp. 1001-1008
[54.]
A. Dzik-Jurasz, C. Domenig, M. George, J. Wolber, A.R. Padhani, G. Brown, et al.
Diffusion MRI for prediction of response of rectal cancer to chemoradiation.
[55.]
D.A. Hamstra, C.J. Galban, C.R. Meyer, T.D. Johnson, P.C. Sundgren, C. Tsien, et al.
Functional diffusion map as an early imaging biomarker for high-grade glioma: Correlation with conventional radiologic response and overall survival.
J Clin Oncol, 26 (2008), pp. 3387-3394
[56.]
M.D. Pickles, P. Gibbs, M. Lowry, L.W. Turnbull.
Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer.
Magn Reson Imaging, 24 (2006), pp. 843-847
[57.]
D.A. Hamstra, A. Rehemtulla, B.D. Ross.
Diffusion magnetic resonance imaging: A biomarker for treatment response in oncology.
J Clin Oncol, 25 (2007), pp. 4104-4109
[58.]
Q.S. Ng, V. Goh, H. Fichte, E. Klotz, P. Fernie, M.I. Saunders, et al.
Lung cancer perfusion at multi–detector row CT: Reproducibility of whole tumor quantitative measurements.
Radiology, 239 (2006), pp. 547-553
[59.]
D.M. Patterson, A.R. Padhani, D.J. Collins.
Technology insight: Water diffusion MRI-a potential new biomarker of response to cancer therapy.
Nat Clin Pract Oncol, 5 (2008), pp. 220-233
[60.]
W.A. Weber, S.I. Ziegler, R. Thodtmann, A.R. Hanauske, M. Schwaiger.
Reproducibility of metabolic measurements in malignant tumors using FDG PET.
J Nucl Med, 40 (1999), pp. 1771-1777
[61.]
R.L. Wahl, H. Jacene, Y. Kasamon, M.A. Lodge.
From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors.
J Nucl Med, 50 (2009), pp. 122S-150S
[62.]
H. Young, R. Baum, U. Cremerius, K. Herholz, O. Hoekstra, A.A. Lammertsma, et al.
Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-d-glucose uptake at PET.
Eur J Cancer, 35 (1999), pp. 1773-1782
[63.]
S.D. Curran, A.U. Muellner, L.H. Schwartz.
Imaging response assessment in oncology.
Cancer imaging, 6 (2006), pp. S126-S130
[64.]
N. Hylton.
Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker.
J Clin Oncol, 24 (2006), pp. 3293-3298
[65.]
A.M. Jubb, A.J. Oates, S. Holden.
Predicting benefit from antiangiogenic agents in malignancy.
Nature, 6 (2006), pp. 626-635
[66.]
I. Abdulkader, A. Ruibal, J. Cameselle-Teijeiro, F. Gude, L. León, P. Arce-Calisaya, et al.
EGFR expression correlates with maximum standardized uptake value of 18F-fluorodeoxyglucose- PET in squamous cell lung carcinoma.
Curr Radiopharm, 2 (2009), pp. 175-176
[67.]
J.P. O’Connor, A. Jackson, M.C. Asselin, D.L. Buckley, G.J. Parker, G.C. Jayson.
Quantitative imaging biomarkers in the clinical development of targeted therapeutics: Current and future perspectives.
Lancet Oncol, 9 (2008), pp. 766-776
Copyright © 2010. Sociedad Española de Radiología Médica
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos