x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2015

1,530
© Thomson Reuters, Journal Citation Reports, 2015

Indexada en:

Index Current Contents/Clinical Medicine, JCR, SCI-Expanded, Index Medicus/Medline, Excerpta Medica/EMBASE, IBECS, IME, CANCERLIT, SCOPUS

Métricas

  • Factor de Impacto: 1,530(2015)
  • 5-años Factor de Impacto: 1,710
  • SCImago Journal Rank (SJR):0,43
  • Source Normalized Impact per Paper (SNIP):0,653
doi: 10.1016/S0213-005X(04)73030-X
Fundamento, tipos y aplicaciones de los arrays de ADN en la microbiología médica
Basis, types and application of DNA arrays in clinical microbiology
Antonio Doménech-Sánchezaa,1, , Jordi Vilabb
a Unidad de Investigación. Hospital Universitario Son Dureta. Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS). Palma de Mallorca. España
b Servicio de Microbiología. Hospital Clínic. Barcelona. España
Recibido 19 septiembre 2003, Aceptado 25 octubre 2003
Resumen

Los chips o arrays de ADN son una serie de sondas de ADN unidas a un soporte sólido en una disposición regular y prefijada. El ácido nucleico diana que será detectado puede ser ADN o ARN y previamente a la hibridación debe ser marcado con una sustancia fluorescente o radiactiva. La principal ventaja con respecto a las técnicas de biología molecular como la reacción en cadena de la polimerasa es que pueden detectarse en un único procesamiento miles de genes. Hasta la actualidad la aplicación de los arrays de ADN en el campo de la microbiología clínica es escasa. Dentro de las aplicaciones específicas cabe destacar: a) Investigación de la patogenia bacteriana; b) análisis de la evolución bacteriana y epidemiología; c) estudio de los mecanismos de acción y de resistencia de los antibióticos, y d) diagnóstico microbiológico de las enfermedades infecciosas.

Si bien esta metodología se encuentra todavía en fase embrionaria por lo que respecta a su aplicación en el campo del diagnóstico microbiológico, presenta una serie de ventajas que la hacen muy atractiva y en un futuro pueda ser una técnica muy válida para el diagnóstico de las enfermedades infecciosas.

Resumen

The DNA microarrays or microchips are sets of DNA probes bound to a solid support in a prefixed and regular disposition. The target nucleic acid that can be detected is either DNA or RNA, which is previously labeled with a fluorochrome or a radioactive compound. The main advantage with respect to other molecular biological tools, such as polymerase chain reaction, is that thousands of genes can be detected in a single procedure. The application of the DNA arrays in the field of clinical microbiology is so far scarce. Among the specific applications we can point out: 1. Investigation of bacterial pathogenesis; 2. Analysis of bacterial evolution and molecular epidemiology; 3. Study of the mechanisms of action and resistance to antimicrobial agents and 4. Microbiological diagnostic of the infectious diseases. This methodology is still in an embryonic phase with respect to its application in clinical microbiology. However, it presents a series of advantages that make it very attractive and in the future it may become a valuable tool for the diagnosis of infectious diseases.

Palabras clave
Arrays de ADN, Microarrays de ADN, Microchips de ADN, Aplicaciones, Diagnóstico molecular
Key words
DNA arrays, DNA microarrays, DNA microchips, Stroke, Molecular diagnosis
El Texto completo solo esta disponible en PDF
Bibliografía
1.
R.D. Fleischmann,O. Adams,R.A. White,E.F. Clayton,A.R. Kirkness,C.J. Kerlavage
Whole-genome random sequencing and assembly of Haemophilus influenzae Rd
Science, 269 (1995), pp. 496-512
2.
M.S. Rajeevan,I.M. Dimulescu,E.R. Unger,S.D. Vernon
Chemiluminescent analysis of gene expression on high-density filter arrays
J Histochem Cytochem, 47 (1999), pp. 337-342
3.
S.E. Chuang,D.L. Daniels,F.R. Blattner
Global regulation of gene expression in Escherichia coli
J Bacteriol, 175 (1993), pp. 2026-2036
4.
D. Descamps,V. Calvez,G. Collin,A. Cecille,C. Apetrei,F. Damond
Line probe assay for detection of human immunodeficiency virus type 1 mutations conferring resistance to nucleoside inhibitors of reverse transcriptase: Comparison with sequence analysis
J Clin Microbiol, 36 (1998), pp. 2143-2145
5.
M.D. Schena,R. Shalon,W. Davis,P.O. Brown
Quantitative monitoring of gene expression patterns with a complementary DNA microarray
Science, 270 (1995), pp. 467-470
6.
F.R. Blattner,G. Plunkett,C.A. Bloch,N.T. Perna,V. Burland,M. Riley
The complete genome sequence of Escherichia coli K-12
Science, 277 (1997), pp. 1453-1474
7.
D.A. Israel,N. Salama,C.N. Arnold,S.F. Moss,T. Ando,H.P. Wirth
Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses
J Clin Invest, 107 (2001), pp. 611-620
8.
C.E. Belcher,J. Drenkow,B. Kehoe,T.R. Gingeras,N. McNamara,H. Lemjabbar
The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies
Proc Natl Acad Sci USA, 97 (2000), pp. 13847-13852
9.
M. Kato-Maeda,J.T. Rhee,T.R. Gingeras,H. Salamon,J. Drenkow,N. Smittipat
Comparing genomes within the species Mycobacterium tuberculosis
Genome Res, 11 (2001), pp. 547-554
10.
S. Hamels,L. Gala,S. Dufour,P. Vannuffem,N. Zammatteo,J. Remaci
Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species and methicillin resistance
Biotechniques, 31 (2001), pp. 1364-1372
11.
J.C. Cho,J.M. Tiedje
Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays
Appl Environ Microbiol, 67 (2001), pp. 3677-3682
12.
R.M. Anthony,T.J. Brown,G.L. French
Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array
J Clin Microbiol, 38 (2000), pp. 781-788
13.
A. Troesch,H. Nguyen,C.G. Miyada,S. Desvarenne,T.R. Gingeras,P.M. Kaplan
Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays
J Clin Microbiol, 37 (1999), pp. 49-55
14.
T.M. Straub,D.S. Daly,S. Wunshel,P.A. Rochelle,R. DeLeon,D.P. Chandler
Genotyping Cryptosporidium parvum with an hsp70 single-nucleotide polymorphism microarray
Appl Environ Microbiol, 68 (2002), pp. 1817-1826
15.
R.J. Lipshutz,D. Morris,M. Chee,E. Hubbell,M.J. Kozal,N. Shah
Using oligonucleotide probe arrays to access genetic diversity
BioTechniques, 19 (1995), pp. 442-447
16.
M. Wilson,J. DeRisi,H.H. Kristensen,P. Imboden,S. Rame,P.O. Brown
Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization
Proc Natl Acad Sci USA, 96 (1999), pp. 12833-12838
17.
N.P. Rijpens,G. Jannes,M. Van Asbroeck,R. Rossau,L.MF. Herman
Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes
Appl Environ Microbiol, 62 (1996), pp. 1683-1688
18.
L.J. Van Doorne,A. Verschuuren-Van Haperen,A. Burnens
Rapid identification of thermotolerant Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter upsaliensis from various geographic locations by a GTPase.based PCR hybridization assay
J Clin Microbiol, 37 (1999), pp. 1970-1976
19.
S.H. Goh,R.R. Facklam,M. Chang,J.E. Hill,G.J. Tyrrell,E.C. Burns
Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences
J Clin Microbiol, 38 (2000), pp. 3953-3959
20.
V. Chizhikov,A. Rasooly,C. Chumakov,D.D. Levy
Microarray analysis of microbial virulence factors
Appl Environ Microbiol, 67 (2001), pp. 3258-3263
21.
L.J. Van Doorn,C. Figueiredo,R. Rossau,G. Jannes,M. Van Asbroek,J.C. Sousa
Typing of Helicobacter pylori vacA gene and detection of cagA gene by PCR and reverse hybridization
J Clin Microbiol, 36 (1998), pp. 1271-1276
22.
L.J. Van Doorn,Y.J. Debets-Ossenkopp,A. Marais,R. Sanna,F. Megraud,J.G. Kusters
Rapid detection, by PCR and reverse hybridization, of mutations in the Helicobacter pylori 23S rRNA gene, associated with macrolide resistance
Antimicrob Agents Chemother, 43 (1999), pp. 1779-1782
23.
N.P. Rijpens,G. Jannes,M. Van Asbroeck,L.MF. Herman,R. Rossau
Simultaneous detection of Listeria spp. and Listeria monocytogenes by reverse hybridization with 16S-23S rRNA spacer probes
Mol Cell Probes, 9 (1996), pp. 423-432
24.
H. De Beenhouwer,Z. Lhiang,G. Jannes,W. Mijs,L. Machtelinckx,R. Rossau
Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay
Tuber Lung Dis, 76 (1995), pp. 425-430
25.
T.J. Brown,G.L. French
Genotypes associated with isoniazid resistance in Mycobacterium tuberculosis isolates seen at a London Teaching Hospital
J Microbiol Meth, 38 (1999), pp. 226
26.
N. Miller,S. Infante,T. Cleary
Evaluation of the LiPA mycobacteria assay for identification of Mycobacterial species from BACTEC 12B bottles
J Clin Microbiol, 38 (2000), pp. 1915-1919
27.
J. Garaizar,S. Porwollik,A. Echeita,A. Rementeria,S. Herrera,R.M. Wong
DNA microarray-based typing of an atypical monophasic Salmonella enterica serovar
J Clin Microbiol, 40 (2002), pp. 2074-2078
28.
S.H. Goh,Z. Santucci,W.E. Kloos,M. Faltyn,C.G. George,D. Driedger
Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridisation
J Clin Microbiol, 35 (1997), pp. 3116-3121
29.
J. McCluskey,C.G. Dowson,T.J. Mitchell
The use of microarray technology for the analysis of Streptococcus pneumoniae
Comp Funct Genom, 3 (2002), pp. 366-368
30.
C.F. Edman,P. Mehta,R. Press,C. Spargo,G. Walker,M. Neremberg
Pathogen analysis and genetic predisposition testing using microelectronic arrays and isothermal amplification
J Invest Med, 48 (2000), pp. 93-101
31.
L. Westin,C. Miller,D. Vollmer,D. Canter,R. Radtkey,M. Nerenberg
Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array
J Clin Microbiol, 39 (2001), pp. 1097-1104
32.
R.E. Hayward,J.L. De Risi,S. Alfadhli,D.C. Kaslow,P.O. Brown,P.K. Rathod
Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria
Mol Microbiol, 35 (2000), pp. 6-14
33.
L. Zhou,T.C. Harder,U. Ullmann,P. Rautenberg
Rapid detection by reverse hybridization of mutations in the UL97 gen of human cytomegalovirus conferring resistance to ganciclovir
J Clin Virol, 13 (1999), pp. 53-59
34.
J. Li,S. Chen,D.H. Evans
Typing and subtyping Influenza virus using DNA microarrays and multiplex reverse transcriptase PCR
J Clin Microbiol, 39 (2001), pp. 696-704
35.
V. Chizhikov,M. Wagner,A. Ivshima,Y. Hoshino,A.Z. Kapikian,K. Chumakov
Detection and genotyping of human group A rotavirus by oligonucleotide microarray hybridization
J Clin Microbiol, 40 (2002), pp. 2398-2407
36.
L. Stuyver,A. Wyseur,A. Rombout,J. Louwagie,T. Scarcez,C. Verhofstede
Line probe assay for rapid detection of drug-selected mutations in the human immunodeficiency virus type 1 reverse transcriptase gene
Antimicrob Agents Chemother, 41 (1997), pp. 284-291
37.
J.C. Schmit,L. Ruiz,L. Stuyver,K. Van Laethem,I. Vanderlinden,T. Puig
Comparison of the LiPA HIV-1 RT test, selective PCR and direct solid phase sequencing for the detection of the HIV-1 drug resistance mutations
J Virol Methods, 73 (1998), pp. 77-82
38.
M. Vahey,M.E. Nau,S. Barrick,J.D. Cooley,R. Sawyer,A.A. Sleeker
Performance of the Affymetrix GeneChip HIV PRT 440 platform for antiretroviral drug resistance genotyping of human immunodeficiency virus type 1 clades and viral isolates with length polymorphisms
J Clin Microbiol, 37 (1999), pp. 2533-2537
39.
M.J. Kozal,N. Shah,N. Shen,R. Yang,R. Fucini,T.C. Merigan
Extensive polymorphisms observed in HIV-1 clase B protease gene using high density oligonucleotide arrays
Nature Med, 2 (1996), pp. 753-759
40.
L. Blitz,F.H. Pujol,P.D. Swenson,L. Porto,R. Atencio,M. Araujo
Antigenic diversity of hepatitis B virus strains of genotype F in Ameridians and other population groups in Venezuela
J Clin Microbiol, 36 (1998), pp. 648-651
41.
B. Kleter,L.J. Van Doorn,L. Schrauwen,A. Molijn,S. Sastrowijoto,J. Ter Schegget
Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus
J Clin Microbiol, 37 (1999), pp. 2508-2517
42.
T. Livache,B. Fouque,A. Roget,J. Marchand,G. Bidan,R. Teoule
Polypyrrole DNA chip on a silicon device: Example of hepatitis C virus genotyping
Anal Biochem, 255 (1998), pp. 188-194
43.
L. Stuyer,A. Wyseur,W. Van Arnhem,F. Hernández,G. Maertens
Second-generation line probe assay for hepatitis C virus genotyping
J Clin Microbiol, 34 (1996), pp. 2259-2266
Correspondencia: Dr. A. Doménech-Sánchez. Unidad de Investigación. Hospital Universitario Son Dureta. Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS). Andrea Doria, 55. 07014 Palma de Mallorca. España.
Copyright © 2004. Elsevier España, S.L.