x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

Indexada en:

Index Medicus/MEDLINE, Scopus, IBECS, IME, MEDES

Métricas

  • SCImago Journal Rank (SJR):0,12
  • Source Normalized Impact per Paper (SNIP):0,103
doi: 10.1016/S0214-9168(03)78936-0
Estudio del mecanismo de acción hipolipemiante de la lovastatina en la rata
Study of the mechanism of hypolipemiant effect of lovastatin in the rat
I.C. López-Pérez, E. Relaño, E. Herrera, C. Bocos1,
Departamento de Biología Celular, Bioquímica y Biología Molecular. Facultad de Ciencias Experimentales y de la Salud. Universidad San Pablo-CEU. Madrid. España
Resumen
Fundamento

Las estatinas son agents hipolipemiantes que no sólo mejoran la concentración de colesterol sino también la de triglicéridos (TG). Mientras su acción hipocolesterolemiante implica la inhibición de la colesterogénesis a través de su acción sobre la HMG-CoA reductasa, el mecanismo de su acción hipotrigliceridemiante no es tan conocido. El receptor activado por proliferadores peroxisomales tipo alfa (PPARα) es clave en el metabolismo lipídico y se ha relacionado con la afectación farmacológica de la trigliceridemia (tal es el caso de fibratos).

Métodos

El presente trabajo se ha llevado a cabo para determinar el efecto agudo de una dosis elevada de lovastatina sobre la expresión hepatica de dicho receptor en ratas normolipémicas, así como de alguno de sus genes diana. Paralelamente, se realizó un estudio ex vivo de la actividad lipolítica del tejido adiposo blanco.

Resultados

A 1,5, 3 y 7 h (tiempos de estudio) de la administración del fármaco no hubo afectación de la colesterolemia y, aunque tampoco parecía verse afectada la concentración de TG en plasma, sí que se observaba una acción hipotrigliceridemiante a las 7 h. En cuanto a las expresiones de PPARα y la de su gen diana, acil- CoA oxidasa peroxisomal (ACO), se comportaron de manera paralela, esto es, una tendencia significativa a aumentar en los animales tratados a las 7 h de la administración. En cuanto a la expresión de apolipoproteína CIII no había cambios, y la de fosfoenolpiruvato carboxicinasa (PEPCK) parecía responder bien en los dos grupos al perfil de FFA en plasma. En cuanto a la lipólisis, cuyos valores basales se incrementaron a lo largo del estudio, se veía considerablemente reducida por acción del fármaco a las 7 h, mientras que, curiosamente, a las 3 h de la administración el tejido adiposo de las ratas tratadas parecía más sensible a la adrenalina que el de las controles.

Conclusiones

Por todo ello, el efecto hipotrigliceridemiante de la lovastatina parece estar relacionado con una inducción de la expresión hepática de PPARα y de genes de la ß-oxidación peroxisomal y con un efecto antilipolítico en el tejido adiposo.

Resumen
Background

Statins are hypolipidemic drugs that not only improve cholesterol but also triglyceride levels. Whereas their cholesterol-lowering effect involves inhibition of cholesterogenesis through inhibition of enzyme 3-hidroxy-methylglutaryl CoA (HMG-CoA) reductase, the mechanism by whichthey reduce triglycerides remains unknown. Peroxisome proliferator-activated receptor alpha (PPAR-α is crucial in lipid metabolism and has been related to the pharmacologic effect on triglyceridemia (as is the case of fibrates).

Methods

This study was carried out to determine the effect of acute administration of a high dose of lovastatin on hepatic expression of both PPAR-α and some of its target genes in normolipidemic rats. In parallel, the ex vivo lipolytic activity of white adipose tissue from the same rats was also studied.

Results

Cholesterolemia was not affected by the drug at the times considered (1,5, 3 and 7 hours after administration of the drug) and, although triglyceridemia did not seem to be affected by the treatment, a hypotriglyceridemic effect was observed at 7 hours after administration. Expression of PPAR-α and its target gene, peroxisomal acyl-CoA oxidase (ACO) were similarly affected by the treatment, showing a trend to increase in treated animals. This increase was statistically significant at 7 hours. Expression of apolipoprotein CIII remained unchanged but that of phosphoenolpyruvate carboxykinase (PEPCK) seemed to be sensitive to the plasma FFA profile in both animal groups. Regarding adipose tissue lipolytic activity, the basal values, which increased throughout the study, were markedly reduced by lovastatin at 7 hours after administration. However, at 3 hours after administration adipose tissue from treated rats seemed to be more sensitive to epinephrine than tissue from control rats.

Conclusions

The results of this study suggest that the hypotriglyceridemic effect of lovastatin is related to both induction of hepatic expression of PPAR-α and genes related to peroxisomal oxidation, as well as to the antilipolytic effect on adipose tissue.

Palabras clave
Estatinas, PPAR, Expresión génica, Lipólisis, Triglicéridos
El Texto completo solo esta disponible en PDF
Bibliografía
1.
T. Fujioka,Y. Tsujita
Effects of single administration of pravastatin sodium on hepatic cholesterol metabolism in rats
Eur J Pharmacol, 323 (1997), pp. 223-228
2.
K. Schoonjans,J. Peinado-Onsurbe,J.C. Fruchart,A. Tailleux,C. Fiévet,J. Auwerx
3-hydroxy-3-methylglutaryl CoA reductase inhibitors reduce serum triglyceride levels through modulation of apolipoprotein C-III and lipoprotein lipase
Febs Lett, 452 (1999), pp. 160-164
3.
S.T. Mosley,S.S. Kalinowski,B.L. Schafer,R.D. Tanaka
Tissue-selective acute effects of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase on cholesterol biosynthesis in lens
J LipidRes, 30 (1989), pp. 1411-1420
4.
D.J. Norman,D.R. Illingworth,J. Munson,J. Hosenpud
Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin
N Engl J Med, 318 (1988), pp. 46-47
5.
C. Olbricht,C. Wanner,T. Eisenhauer,V. Kliem,R. Doll,M. Boddaert
Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses
Clin Pharmacol Ther, 62 (1997), pp. 311-321
6.
M. Anguita,L. Alonso-Pulpon,J.M. Arizon,M.A. Cavero,F. Valles,J. Segovia
Comparison of the effectiveness of lovastatin therapy for hypercholesterolemia after heart transplantation between patients with and without pretransplant atherosclerotic coronary artery disease
Am J Cardiol, 74 (1994), pp. 776-779
7.
A. Martínez-Castelao,J.M. Grinyo,S. Gil-Vernet,D. Serón,M.J. Castineiras,R. Ramos
Lipid-lowering long-term effects of six different statins in hypercholesterolemic renal transplant patients under cyclosporine immunosuppression
Transplant Proc, 34 (2002), pp. 398-400
8.
C. Bocos,M. Gottlicher,K. Gearing,C. Banner,E. Enmark,M. Teboul
Fatty acid activation of peroxisome proliferator-activated receptor (PPAR
J Steroid Biochem Molec Biol, 53 (1995), pp. 467-473
9.
J. Auwerx,K. Schoonjans,J.C. Fruchart,B. Staels
Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR
Atherosclerosis, 124 (1996), pp. S29-S37
10.
P. Prasanna,A. Thibault,L. Liu,D. Samid
Lipid metabolism as a target for brain cancer therapy: synergistic activity of lovastatin and sodium phenylacetate against human glioma cells
J Neurochem, 66 (1996), pp. 710-716
11.
G. Martin,H. Duez,C. Blanquart,V. Berezowski,P. Poulain,J.C. Fruchart
Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apoA-I
J Clin Invest, 107 (2001), pp. 1423-1432
12.
I. Inoue,S. Goto,K. Mizotani,T. Awata,T. Mastunaga,S. Kawai
Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect: reduction of mRNA levels for interleukin-1-beta, interleukin-6, cyclooxygenase-2, and p22phox by regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) in primary endothelial cells
Life Sci, 67 (2000), pp. 863-876
13.
N. Roglans,E. Sanguino,C. Peris,M. Alegret,M. Vázquez,T. Adzet
Atorvastatin treatment induced peroxisome proliferator-activated receptor rrexpression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats
J Pharmacol Exp Ther, 302 (2002), pp. 232-239
14.
P.B. Garland,P.J. Randle
A rapid enzymatic assay for glycerol
Nature, 196 (1962), pp. 987-988
15.
M. Somogyi
Determination of blood sugar
J Biol Chem, 160 (1954), pp. 69-73
16.
I. Inoue,S. Noji,M. Shen,K. Takahashi,S. Katayama
The peroxisome proliferator-activated receptor α(PPARα) regulates the plasma thiobarbituric acid-reactive substances (TBARS) level
Biochem Biophys Res Comm, 237 (1997), pp. 606-610
17.
M.C. Domínguez,E. Herrera
The effect of glucose, insulin and adrenaline on glycerol metabolism “in vitro” in rat adipose tissue
Biochemistry, 158 (1976), pp. 183-190
18.
B.R. Krause,R.S. Newton
Lipid-lowering activity of atorvastatin and lovastatin in rodent species: triglyceride-lowering in rats correlates with efficacy in LDL animal models
Atherosclerosis, 117 (1995), pp. 237-244
19.
H.H. Ditschuneit,K. Kuhn,H. Ditschuneit
Comparison of different HMG-CoA reductase inhibitors
Eur J Clin Pharmacol, 40 (1991), pp. S27-S32
20.
J.M. Henwood,R.C. Heel
Lovastatin. A preliminary review of its pharmacodynamic properties and therapeutic use in hyperlipidaemia
Drugs, 36 (1988), pp. 429-454
21.
M.I. Panadero,E. Herrera,C. Bocos
Nutritionally induced changes in the peroxisome proliferator-activated receptor-α gene expression in liver of suckling rats are dependent on insulinaemia
Arch Biochem Biophys, 394 (2001), pp. 182-188
22.
M.I. Panadero,E. Herrera,C. Bocos
Peroxisome proliferator-activated receptor-α expression in rat liver during postnatal development
Biochimie, 82 (2000), pp. 723-726
23.
C. Bocos,M. Castro,G. Quack,E. Herrera
Studies with etofibrate in the rat. Part II: A comparison of the effects of prolonged and acute administration on plasma lipids, liver enzymes and adipose tissue lipolysis
Biochim Biophys Acta, 1168 (1993), pp. 340-347
24.
C. Bocos,E. Herrera
Comparative study on the in vivo and in vitro antilipolytic effects of etofibrate, nicotinic acid and clofibrate in the rat
Environ Toxicol Pharmacol, 2 (1996), pp. 351-357
25.
J. Le Magnen
Lipogenesis, lipolysis and feeding rhythms
Ann Endocrinol (Paris, 49 (1988), pp. 98-104
26.
T. Lemberger,B. Staels,R. Saladin,B. Desvergne,J. Auwerx,W. Wahli
Regulation of the peroxisome proliferator-activated receptor W gene by glucocorticoids
J Biol Chem, 269 (1994), pp. 24527-24530
27.
J. Danguir,S. Nicolaidis
Circadian sleep and feeding patterns in the rat: possible dependence on lipogenesis and lipolysis
Am J Physiol, 238 (1980), pp. E223-E230
28.
J.S. Samra,M.L. Clark,S.M. Humphreys,I.A. Macdonald,D.R. Matthews,K.N. Frayn
Effects of morning rise in cortisol concentration on regulation of lipolysis in subcutaneous adipose tissue
Am J Physiol, 271 (1996), pp. E996-E1002
29.
R.A. Willis,K. Folkers,J.L. Tucker,C.Q. Ye,L.J. Xia,H. Tamagawa
Lovastatin decreases coenzyme Q levels in rats
Proc Natl Acad Sci USA, 87 (1990), pp. 8928-8930
30.
U.M. Marinari,M.A. Pronzato,D. Dapino,P. Gazzo,N. Traverso,D. Cottalasso
Effects of simvastatin on liver and plasma levels of cholesterol, dolichol and ubiquinol in hypercholesterolemic rats
Ital J Biochem, 44 (1995), pp. 1-9
31.
M.S. Balkin,M. Sonenberg
Hormone-induced homologous and heterologous desensitization in the rat adipocyte
Endocrinology, 109 (1981), pp. 1176-1183
32.
M. Lafontan,M. Berlan
Fat cell adrenergic receptors and the control of white and brown fat cell function
J Lipid Res, 34 (1993), pp. 1057-1091
33.
A. Bousquet-Mélou,J. Galitzky,C. Muñoz Moreno,M. Berlan,M. Lafontan
Desensitization of ß-adrenergic responses in adipocytesinvolves receptor subtypes and cAMP phosphodiesterase
Eur J Pharmacol, 289 (1995), pp. 235-247
34.
T.F. McGuire,X.Q. Xu,S.J. Corey,G.G. Romero,S.M. Sebti
Lovastatin disrupts early events in insulin signaling: a potential mechanism of lovastatin’s anti-mitogenic activity
Biochem Biophys Res Commun, 204 (1994), pp. 399-406
35.
K. Ohnaka,S. Shimoda,H. Nawata,H. Shimokawa,K. Kaibuchi,Y. Iwamoto
Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts
Biochem Biophys Res Commun, 287 (2001), pp. 337-342
36.
X. Xu,T.F. McGuire,M.A. Blaskovich,S.M. Sebti,G.G. Romero
Lovastatin inhibits the stimulation of mitogen-activated protein kinase by insulin in HIRcB fibroblasts
Arch Biochem Biophys, 326 (1996), pp. 233-237
37.
H.N. Sorensen,E. Hvattum,E.J. Paulssen,K.M. Gautvik,J. Bremer,O. Spydevold
Induction of peroxisomal acyl-CoA oxidase by 3-thia fatty acid, in hepatoma cells and hepatocytes in culture is modified by dexamethasone and insulin
Biochim Biophys Acta, 1171 (1993), pp. 263-271
38.
J.M. Argilés,F.J. López Soriano
Interrelaciones metabólicas entre el huésped y el tumor durante la fase perinatal
Med Clin (Barc), 109 (1997), pp. 186-194
39.
S.T. Russell,M.J. Tisdale
Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo
Br J Cancer, 87 (2002), pp. 580-584
40.
A. Faggiotto,R. Paoletti
Do pleiotropic effects of statins beyond lipid alterations exist in vivo? What are they and how do they differ between statins?
Curr Atheroscler Rep, 2 (2000), pp. 20-25
Correspondencia: Dr. C. Bocos. Laboratorio de Biología Molecular. Facultad de Ciencias Experimentales y de la Salud. Universidad San Pablo-CEU. Ctra. Boadilla del Monte, km 5,300. 28668 Boadilla del Monte. Madrid. España. Correo electrónico:
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.