Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición El adipocito como biocomunicador
Journal Information
Vol. 50. Issue 6.
Pages 187-197 (June 2003)
Share
Share
Download PDF
More article options
Vol. 50. Issue 6.
Pages 187-197 (June 2003)
Full text access
El adipocito como biocomunicador
The adipocyte as a biocommunicator
Visits
7024
J.M. Fernández-Real
Corresponding author
uden.jmfernandezreal@htrueta.scs.es

Correspondencia: Dr. J.M. Fernández-Real. Unitat de Diabetes, Endocrinologia i Nutrició. Hospital Universitari de Girona Dr. Josep Trueta. Av. de Francia, s/n. 17007 Girona. España.
Unitat de Diabetes, Endocrinologia i Nutrició, Hospital Universitari de Girona Dr. Josep Trueta. Girona. España
This item has received
Article information

El adipocito es una célula con una capacidad de generar y recibir información de su medio ambiente de una forma extraordinariamente eficiente. En conexión con la central integradora de datos (nuestro sistema nervioso central), parece interactuar constantemente con nuestro sistema inmunológico en la reacción adecuada del organismo ante estímulos exteriores (infección, exceso o déficit de aporte energético) e interiores (estrés, déficit en la disponibilidad de sustratos). Se revisa brevemente el sistema de señales intracrinas, paracrinas y endocrinas que utiliza el adipocito para esta labor.

Palabras clave:
Tejido adiposo
Obesidad
Citocinas
Hormonas
Receptores hormonales

Adipocytes show an extraordinarily efficient capacity to trigger and receive information from the environment. These cells are connected to a central data processor (our central nervous system), and seem to interact constantly with our immune system in producing an appropriate response of the body to external (infection, energy excess or deficit) and internal (stress, decreased substrate availability) stimuli. The system of intracrine, paracrine and endocrine signals used by adipocytes in this task is briefly summarized.

Key words:
Adipose tissue
Obesity
Cytokines
Hormones
Hormonal receptors
Full text is only aviable in PDF
Bibliografía
[1.]
B.L. Wajchenberg.
Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome.
Endocr Rev, 21 (2000), pp. 697-738
[2.]
G. Fruhbeck, J. Gomez-Ambrosi, F.J. Muruzabal, M.A. Burrell.
The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation.
Am J Physiol Endocrinol Metab, 280 (2001), pp. E827-E847
[3.]
M. Ryden, M. Elizalde, V. van Harmelen, A. Ohlund, J. Hoffstedt, S. Bringman, et al.
Increased expression of eNOS protein in omental versus subcutaneous adipose tissue in obese human subjects.
Int J Obes Relat Metab Disord, 25 (2001), pp. 811-815
[4.]
J.r. Manning RD, L. Hu, D.Y. Tan, S. Meng.
Role of abnormal nitric oxide systems in salt-sensitive hypertension.
Am J Hypertens, 14 (2001), pp. S68-S73
[5.]
B. Leclercq, E.A. Jaimes, L. Raij.
Nitric oxide synthase and hypertension.
Curr Opin Nephrol Hypertens, 11 (2002), pp. 185-189
[6.]
M. Perreault, A. Marette.
Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle.
Nat Med, 7 (2001), pp. 1138-1143
[7.]
G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman.
Adipose expression of tumor necrosis factor-alpha: direct role in obesitylinked insulin resistance.
Science, 259 (1993), pp. 87-91
[8.]
G.S. Hotamisligil, A. Budavari, D. Murray, B.M. Spiegelman.
Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes.
J Clin Invest, 94 (1994), pp. 1543-1549
[9.]
G.S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M.F. White, B.M. Spiegelman.
IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance.
Science, 271 (1996), pp. 665-668
[10.]
G.S. Hotamisligil, B.M. Spiegelman.
Tumor necrosis factor α: a key component of the obesity-diabetes link.
Diabetes, 43 (1994), pp. 1271-1278
[11.]
P.A. Kern, M. Saghizadeh, J.M. Ong, R.J. Bosch, R. Deem, R.B. Simsolo.
The expression of tumor necrosis factor in human adipose tisssue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase.
J Clin Invest, 95 (1995), pp. 2111-2119
[12.]
G.S. Hotamisligil, P. Arner, J.F. Caro, R.L. Atkinson, B.M. Spiegelman.
Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance.
J Clin Invest, 95 (1995), pp. 2409-2415
[13.]
M. Saghizadeh, J.M. Ong, W.T. Garvey, R.R. Henry, P.A. Kern.
The Expression of TNFα by muman muscle. Relationship to insulin resistance.
J Clin Invest, 97 (1996), pp. 1111-1116
[14.]
H. Xu, K.T. Uysal, J.D. Becherer, P. Arner, G.S. Hotamisligil.
Altered tumor necrosis factor-alpha (TNF-alpha) processing in adipocytes and increased expression of transmembrane TNFalpha in obesity.
Diabetes, 51 (2002), pp. 1876-1883
[15.]
F. Hube, M. Birgel, Y.M. Lee, H. Hauner.
Expression pattern of tumour necrosis factor receptors in subcutaneous and omental human adipose tissue: role of obesity and non-insulin-dependent diabetes mellitus.
Eur J Clin Invest, 29 (1999), pp. 672-678
[16.]
V. Mohamed-Ali, S. Goodrick, A. Rawesh, D.R. Katz, J.M. Miles, J.S. Yudkin, et al.
Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo.
J Clin Endocrinol Metab, 82 (1997), pp. 4196-4200
[17.]
V. Mohamed-Ali, S. Goodrick, K. Bulmer, J.M. Hollly, J.S. Yudkin, S.W. Coppack.
Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo.
Am J Physiol, 277 (1999), pp. E971-E975
[18.]
G.S. Hotamisligil, P. Arner, R.L. Atkinson, B.M. Spiegelman.
Differential regulation of the p80 tumor necrosis factor receptor in human obesity and insulin resistance.
Diabetes, 46 (1997), pp. 451-455
[19.]
J.M. Fernandez-Real, M. Broch, W. Ricart, C. Gutierrez, R. Casamitjana, J. Vendrell, et al.
Richart plasma levels of the soluble fraction of tumor necrosis factor receptor 2 and insulin resistance.
Diabetes, 47 (1998), pp. 1757-1762
[20.]
M.B. Kahaleh, P.S. Fan.
Effect of cytokines on the production of endothelin by endothelial cells.
Clin Exp Rheumatol, 15 (1997), pp. 163-167
[21.]
A.R. Brasier, J. Li, K.A. Wimbish.
Tumor necrosis factor activates angiotensinogen gene expression by the Rel A transactivator.
Hypertension, 27 (1996), pp. 1009-1017
[22.]
N. Nyui, K. Tamura, S. Yamaguchi, M. Nakamaru, T. Ishigami, M. Yabana, et al.
Tissue angiotensinogen gene expression induced by lipopolysaccharide in hypertensive rats.
Hypertension, 30 (1997), pp. 859-867
[23.]
Z. Pausova, B. Deslauriers, D. Gaudet, J. Tremblay, T.A. Kotchen, P. Larochelle, et al.
Role of tumor necrosis factor-α gene locus in obesity and obesity-associated hypertension in French Canadians.
Hypertension, 36 (2000), pp. 14-19
[24.]
B. Zinman, A.J.G. Hanley, S.B. Harris, J. Kwan, I.G. Fantus.
Circulating tumor necrosis factor-α concentrations in a native Canadian population with high rates of type 2 diabetes mellitus.
J Clin Endocrinol Metab, 84 (1999), pp. 272-278
[25.]
Y. Dorffel, C. Latsch, B. Stuhlmuller, S. Schreiber, S. Scholze, G.R. Burmester, et al.
Preactivated peripheral blood monocytes in patients with essential hypertension.
Hypertension, 34 (1999), pp. 113-117
[26.]
G. Winkler, P. Lakatos, F. Salamon, Z. Nagy, G. Speer, M. Kovacs, et al.
Elevated serum TNF-α levels as a link between endothelial dysfunction and insulin resistance in normotensive obese subjects.
Diabetic Med, 16 (1999), pp. 207-211
[27.]
L.A. Tartaglia, D.V. Goeddel.
Two TNF receptors.
Immunol Today, 13 (1992), pp. 151-153
[28.]
C.A. Smith, T. Farrah, R.G. Goodwin.
The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death.
Cell, 76 (1994), pp. 959-962
[29.]
Y. Nophar, O. Kemper, C. Brakebusch, H. Englemann, R. Zwang, D. Aderka, et al.
Soluble forms of tumor necrosis factors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor.
EMBO J, 9 (1990), pp. 3269-3278
[30.]
D. Aderka, H. Engelmann, Y. Maor, C. Brakebusch, D. Wallach.
Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors.
J Exp Med, 175 (1992), pp. 323-329
[31.]
D. Aderka, H. Engelmann, Y. Shemer-Avni, V. Hornik, A. Galil, B. Sarov, et al.
Variation in serum levels of the soluble TNF receptors among healthy individuals.
Lymphokine Cytokine Res, 11 (1992), pp. 157-159
[32.]
D. Aderka, P. Sorkine, S. Abu-Abid, D. Lev, A. Setton, A.P. Cope, et al.
Shedding kinetics of soluble tumor necrosis factor (TNF) receptors after systemic TNF leaking during isolated limb perfusion. Relevance to the pathophysiology of septic shock.
J Clin Invest, 101 (1998), pp. 650-659
[33.]
J.M. Fernandez-Real, B. Lainez, J. Vendrell, M. Rigla, A. Castro, G. Penarroja, et al.
Shedding of tumor necrosis factor-alpha receptors, blood pressure and insulin sensitivity in type 2 diabetes mellitus.
Am J Physiol Endocrinol Metab, 282 (2002), pp. E952-E959
[34.]
S.K. Fried, D.A. Bunkin, A.S. Greenberg.
Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid.
J Clin Endocrinol Metab, 83 (1998), pp. 847-850
[35.]
Z. Orban, A. Remaley, M. Sampson, Z. Trajanoski, G.P. Chrousos.
The differential effect of food intake and beta-adrenergic stimulation on adipose-derived hormones and cytokines in man.
J Clin Endocrinol Metab, 84 (1999), pp. 2126-2133
[36.]
J.M. Fernandez-Real, M. Vayreda, C. Richart, C. Gutierrez, M. Broch, J. Vendrell, et al.
Circulating interleukin 6 levels, blood pressure and insulin sensitivity in apparently healthy men and women.
J Clin Endocrinol Metab, 86 (2001), pp. 1154-1159
[37.]
R.H. Straub, H.W. Hense, J. Andus, J. Scholmerich, A.J. Riegger, H. Schunkert.
Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: a population-based study.
J Clin Endocrinol Metab, 85 (2000), pp. 1340-1344
[38.]
C.U. Chae, R.T. Lee, N. Rifai, P.M. Ridker.
Blood pressure and inflammation in apparently healthy men.
Hypertension, 38 (2001), pp. 399-403
[39.]
S.E. Humphries, L.A. Luong, M.S. Ogg, E. Hawe, G.J. Miller.
The interleukin-6 -174 G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men.
Eur Heart J, 22 (2001), pp. 2243-2252
[40.]
D.A. Papanicolaou, J.S. Petrides, C. Tsigos, S. Bina, K.T. Kalogeras, R. Wilder, et al.
Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and correlation with catecholamines.
Am J Physiol, 271 (1996), pp. E601-E605
[41.]
H.O. Besedovsky, A. Del Rey.
Immune-neuro-endocrine interactions.
Endocr Rev, 17 (1996), pp. 64-102
[42.]
D.J. Torpy, D.A. Papanicolau, A.J. Lotsikas, R.L. Wilder, G.P. Chrousos, S.R. Pillemer.
Responses of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis to interleukin-6: a pilot study in fibromyalgia.
[43.]
P. Greenwel, M.J. Iraburu, M. Reyes-Romero, N. Meraz-Cruz, E. Casado, J.A. Solis-Herruzo, et al.
Induction of an acute phase response in rats stimulates the expression of alpha 1(I) procollagen messenger ribonucleic acid in their livers. Possible role of interleukin-6.
Lab Invest, 72 (1995), pp. 83-91
[44.]
G.D.O. Lowe, A. Rumley.
Coagulation, fibrinolysis and cardiovascular disease.
Fibrinol Proteol, 13 (1999), pp. 91-98
[45.]
M. Takano, N. Itoh, K. Yayama, M. Yamano, R. Ohtani, H. Okamoto.
Interleukin 6 as a mediator responsible for inflammation-induced increase in plasma angiotensinogen.
Biochem Pharmacol, 45 (2000), pp. 201-206
[46.]
G. Fantuzzi, R. Faggioni.
Leptin in the regulation of immunity, inflammation, and hematopoiesis.
J Leukoc Biol, 68 (2000), pp. 437-446
[47.]
C.T. Montague, J.B. Prins, L. Sanders, J. Zhang, C.P. Sewter, J. Digby, et al.
Depot-related gene expression in human subcutaneous and omental adipocytes.
Diabetes, 47 (1998), pp. 1384-1391
[48.]
C. Couillard, P. Mauriege, P. Imbeault, D. Prud'homme, A. Nadeau, A. Tremblay, et al.
Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia.
Int J Obes Relat Metab Disord, 24 (2000), pp. 782-788
[49.]
W.G. Haynes, D.A. Morgan, S.A. Walsh, A.L. Mark, W.I. Sivitz.
Receptor-mediated regional sympathetic nerve activation by leptin.
J Clin Invest, 100 (1997), pp. 270-278
[50.]
E.W. Shek, M.W. Brands, J.E. Hall.
Chronic leptin infusion increases arterial pressure.
Hypertension, 31 (1998), pp. 409-414
[51.]
Pathophysiological role of leptin in obesity-related hypertension.
J Clin Invest, 105 (2000), pp. 1243-1252
[52.]
R. Rosmond, Y.C. Chagnon, G. Holm, M. Chagnon, L. Perusse, K. Lindell, et al.
Hypertension in obesity and the leptin receptor gene locus.
J Clin Endocrinol Metab, 85 (2000), pp. 3126-3131
[53.]
F. Samad, K. Yamamoto, M. Pandey, D.J. Loskuttof.
Elevated expression of transforming growth factor-in adipose tissue from obese mice.
Mol Med, 3 (1997), pp. 37-48
[54.]
F. Samad, K. Yamamoto, M. Pandey, D.J. Loskutoff.
Elevated expression of transforming growth factor-beta in adipose tissue from obese mice.
Mol Med, 3 (1997), pp. 37-48
[55.]
B. Li, A. Khanna, V. Sharma, T. Singh, M. Suthanthiran, P. August.
TGF-beta1 DNA polymorphisms, protein levels and blood pressure.
Hypertension, 33 (1999), pp. 271-275
[56.]
C. Darimont, G. Vassaux, G. Ailhaud, R. Negrel.
Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II.
Endocrinology, 135 (1994), pp. 2030-2036
[57.]
V. Van Harmelen, M. Elizalde, P. Ariapart, S. Bergstedt-Lindqvist, S. Reynisdottir, J. Hoffstedt, et al.
The association of human adipose angiotensinogen gene expression with abdominal fat distribution in obesity.
Int J Obes Relat Metab Disord, 24 (2000), pp. 673-678
[58.]
M. Boschmann, J. Jordan, F. Adams, N.J. Christensen, J. Tank, G. Franke, et al.
Tissue-specific response to interstitial angiotensin II in humans.
Hypertension, 41 (2003), pp. 37-41
[59.]
S.K. Fried, C.D. Russell, N.L. Grauso, R.E. Brolin.
Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men.
J Clin Invest, 92 (1993), pp. 2191-2198
[60.]
A.D. Sniderman, K.M. Cianflone, R.H. Eckel.
Levels of acylation stimulating protein in obese women before and after moderate weight loss.
Int J Obes, 15 (1991), pp. 333-336
[61.]
W. Khovidhunkit, R.A. Memon, K.R. Feingold, C. Grunfeld.
Infection and inflammation-induced proatherogenic changes of lipoproteins.
J Infect Dis, 181 (2000), pp. S462-S472
[62.]
I. Hardardottir, C. Grunfeld, K.R. Feingold.
Effects of endotoxin and cytokines on lipid metabolism.
Curr Opin Lipidol, 5 (1994), pp. 207-215
[63.]
B. Beutler.
Cerami A The biology of cachectin/TNF-α primary mediator of the host response.
Ann Rev Immunol, 7 (1989), pp. 625-655
[64.]
C. Grunfeld, K.R. Feingold.
Role of cytokines in inducing hyperlipidemia.
Diabetes, 41 (1992), pp. 97-101
[65.]
J.M. Fernandez-Real, C. Gutierrez, W. Ricart, M.J. Castineira, J. Vendrell, C. Richart.
Plasma levels of the soluble fraction of tumor necrosis factor-α receptors 1 and 2 are independent determinants of total and LDL-cholesterol concentrations in healthy subjects.
Atherosclerosis, 146 (1999), pp. 321-327
[66.]
J.C. Pickup, M.B. Mattock, G.D. Chusney, D. Burt.
NIDDM as a disease of the innate immune system: association of the acutephase reactants and interleukin 6 with metabolic syndrome X.
Diabetologia, 40 (1997), pp. 1286-1292
[67.]
A.S. Greenberg, R.P. Nordan, J. McIntosh, J.C. Calvo, R.O. Scow, D. Jablons.
Interleukin-6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin-6 in cancer cachexia.
Cancer Res, 52 (1992), pp. 4113-4116
[68.]
K. Nonogaki, G.M. Fuller, N.L. Fuentes, A.H. Moser, I. Staprans, C. Grunfeld.
Interleukin-6 stimulates hepatic triglyceride secretion in rats.
Endocrinology, 136 (1995), pp. 2143-2149
[69.]
J.M. Stouthard, J.A. Romijn, T. Van der Poll, E. Endert, S. Klein, P.J. Bakker, et al.
Endocrinologic and metabolic effects of interleukin-6 in humans.
Am J Physiol, 268 (1995), pp. E813-E819
[70.]
J.M. Fernandez-Real, M. Broch, J. Vendrell, C. Richart, W. Ricart.
Interleukin 6 gene polymorphism and lipid abnormalities in healthy subjects.
J Clin Endocrinol Metab, 85 (2000), pp. 1334-1339
[71.]
T. Arai, S. Yamashita, K. Hirano, N. Sakai, K. Kotani, S. Fujioka, et al.
Increased plasma cholesteryl ester transfer protein in obese subjects. A possible mechanism for the reduction of serum HDL cholesterol levels in obesity.
Arterioscler Thromb, 14 (1994), pp. 1129-1136
[72.]
W.H. Ettinger, L.D. Miller, J.J. Albers, T.K. Smith, J.S. Parks.
Lipopolysaccharide and tumor necrosis factor cause a fall in plasma concentration of lecithin: cholesterol acyltransferase in cynomolgus monkeys.
J Lipid Res, 31 (1990), pp. 1099-1107
[73.]
C. Grunfeld, M. Pang, W. Doerrler, J.K. Shigenaga, P. Jensen, K.R. Feingold.
Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficeincey syndrome.
J Clin Endocrinol Metab, 74 (1992), pp. 1045-1052
[74.]
E. Levy, C. Gurbindo, F. Lacaille, K. Paradis, L. Thibault, E. Seidman.
Circulating tumor necrosis factor-α levels and lipid abnormalities in patients with cystic fibrosis.
Pediatr Res, 34 (1993), pp. 162-166
[75.]
R.A. Memon, C. Grunfeld, A.H. Moser, K.R. Feingold.
Tumor necrosis factor mediates the effect of endotoxin on cholesterol and triglyceride metabolism in mice.
Endocrinology, 132 (1993), pp. 2246-2253
[76.]
J.r. Lawler JF, M. Yin, A.M. Diehl, E. Roberts, S. Chatterjee.
Tumor necrosis factor-alpha stimulates the maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of neutral sphingomyelinase.
J Biol Chem, 273 (1998), pp. 5053-5059
[77.]
A.V. Benjafield, X.L. Wang, B.J. Morris.
Tumor necrosis factor receptor 2 gene (TNFRSF1B) in genetic basis of coronary artery disease.
J Mol Med, 79 (2001), pp. 109-115
[78.]
J. Ventre, T. Doebber, M. Wu, K. MacNaul, K. Stevens, M. Pasparakis, et al.
Targeted disruption of the tumor necrosis factor-α gene. Metabolic consequences in obese and nonobese mice.
Diabetes, 46 (1997), pp. 1526-1531
[79.]
K.T. Uysal, S.M. Wiesbrock, M.W. Marino, G.S. Hotamisligil.
Protection from obesity-induced insulin resistance in mice lacking TNF-α function.
Nature, 389 (1997), pp. 610-614
[80.]
J.M. Fernandez-Real, C. Gutierrez, W. Ricart, R. Casamitjana, J. Vendrell, M. Fernandez-Castaner, et al.
The TNF-α Nco I polymorphism influences the relationship among insulin resistance, percent body fat and increased serum leptin levels.
Diabetes, 46 (1997), pp. 1468-1472
[81.]
S.M. Herrmann, S. Ricard, V. Nicaud, C. Mallet, D. Arveiler, A. Evans, et al.
Polymorphisms of the tumour necrosis factor-α gene, coronary heart disease and obesity.
Eur J Clin Invest, 28 (1998), pp. 59-66
[82.]
E. Brand, U. Schorr, I. Kunz, E. Kertmen, J. Ringel, A. Distler, et al.
Tumor necrosis factor alpha .308 G/A polymorphism in obese Caucasians.
Int J Obes Relat Metab Disord, 25 (2001), pp. 581-585
[83.]
J. Hoffstedt, P. Eriksson, L. Hellstrom, S. Rossner, M. Ryden, P. Arner.
Excessive fat accumulation is associated with the TNF alpha-308 G/A promoter polymorphism in women but not in men.
Diabetologia, 43 (2000), pp. 117-120
[84.]
T. Ishii, H. Hirose, I. Saito, K. Nishikai, H. Maruyama, T. Saruta.
Tumor necrosis factor alpha gene G-308A polymorphism, insulin resistance, and fasting plasma glucose in young, older, and diabetic Japanese men.
Metabolism, 49 (2000), pp. 1616-1618
[85.]
T. Skoog, P. Eriksson, J. Hoffstedt, M. Ryden, A. Hamsten, P. Arner.
Tumour necrosis factor-α (TNF-α) polymorphisms .857C/A and .863C/A are associated with TNF-α secretion from human adipose tissue.
Diabetologia, 44 (2001), pp. 654-655
[86.]
J.M. Fernandez-Real, M. Broch, J. Vendrell, W. Ricart.
Tumour necrosis factor-α (TNF-α) .863C/A polymorphism is associated with insulin sensitivity.
Diabetologia, 45 (2002), pp. 149-150
[87.]
S.A. Schreyer, S.C. Chua, R.C. LeBoeuf.
Obesity and diabetes in TNF-alfa receptor-deficient mice.
J Clin Invest, 102 (1998), pp. 402-411
[88.]
J.M. Fernandez-Real, J. Vendrell, W. Ricart, M. Broch, C. Gutierrez, R. Casamitjana, et al.
A Polymorphism of the tumor necrosis factor receptor-2 gene is associated with obesity, leptin levels and insulin resistance in young subjects and diet-treated type 2 diabetic patients.
Diabetes Care, 23 (2000), pp. 831-837
[89.]
V. Wallenius, K. Wallenius, B. Ahren, M. Rudling, H. Carlsten, S.L. Dickson, et al.
Interleukin-6-deficient mice develop mature-onset obesity.
Nat Med, 8 (2002), pp. 75-79
[90.]
J.M. Fernandez-Real, M. Broch, J. Vendrell, C. Gutierrez, R. Casamitjana, M. Pugeat, et al.
Interleukin 6 and insulin sensitivity.
Diabetes, 49 (2000), pp. 517-520
[91.]
C. Tsigos, D.A. Papanicolaou, I. Kyrou, R. Defensor, C.S. Mitsiadis, G.P. Chrousos.
Dose-dependent effects of recombinant human interleukin-6 on glucose regulation.
J Clin Endocrinol Metab, 82 (1997), pp. 4167-4170
[92.]
T. Makin, Y. Noguchi, T. Yoshikawa, C. Doi, K. Nomura.
Circulating interleukin 6 concentrations and insulin resistance in patients with cancer.
Br J Surg, 85 (1998), pp. 1658-1662
[93.]
B. Vozarova, C. Weyer, K. Hanson, P.A. Tataranni, C. Bogardus, R.E. Pratley.
Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion.
Obes Res, 9 (2001), pp. 414-417
[94.]
P.A. Kern, S. Ranganathan, C. Li, L. Wood, G. Ranganathan.
Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance.
Am J Physiol Endocrinol Metab, 280 (2001), pp. E745-E751
[95.]
J.P. Bastard, C. Jardel, E. Bruckert.
Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss.
J Clin Endocrinol Metab, 85 (2000), pp. 3338-3342
[96.]
A.D. Pradhan, J.E. Manson, N. Rifai, J.E. Buring, P.M. Ridker.
Creactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.
JAMA, 286 (2001), pp. 327-334
[97.]
K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, K. Matsubara.
cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).
Biochem Biophys Res Commun, 221 (1996), pp. 286-289
[98.]
P.E. Scherer, S. Williams, M. Fogliano, G. Baldini, H.F. Lodish.
A novel serum protein similar to C1q, produced exclusively in adipocytes.
J Biol Chem, 270 (1995), pp. 26746-26749
[99.]
T.P. Combs, A.H. Berg, S. Obici, P.E. Scherer, L. Rossetti.
Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.
J Clin Invest, 108 (2001), pp. 1875-1881
[100.]
A.H. Berg, T.P. Combs, X. Du, M. Brownlee, P.E. Scherer.
The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.
Nat Med, 7 (2001), pp. 947-953
[101.]
J. Fruebis, T.S. Tsao, S. Javorschi, D. Ebbets-Reed, M.R. Erickson, F.T. Yen, et al.
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.
Proc Natl Acad Sci USA, 98 (2001), pp. 2005-2010
[102.]
N. Ouchi, S. Kihara, Y. Arita, K. Maeda, H. Kuriyama, Y. Okamoto, et al.
Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.
Circulation, 100 (1999), pp. 2473-2476
[103.]
N. Ouchi, S. Kihara, Y. Arita, Y. Okamoto, K. Maeda, H. Kuriyama, et al.
Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMPdependent pathway.
Circulation, 102 (2000), pp. 1296-1301
[104.]
N. Maeda, I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, et al.
Diet-induced insulin resistance in mice lacking adiponectin.
Nat Med, 8 (2002), pp. 731-737
[105.]
N. Kubota, Y. Terauchi, T. Yamauchi, T. Kubota, M. Moroi, J. Matsui, et al.
Disruption of adiponectin causes insulin resistance and neointimal formation.
J Biol Chem, 277 (2002), pp. 25863-25866
[106.]
Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, et al.
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
Biochem Biophys Res Commun, 257 (1999), pp. 79-83
[107.]
C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, et al.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.
J Clin Endocrinol Metab, 86 (2001), pp. 1930-1935
[108.]
N. Stefan, B. Vozarova, T. Funahashi, Y. Matsuzawa, C. Weyer, R.S. Lindsay, et al.
Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans.
Diabetes, 51 (2002), pp. 1884-1888
[109.]
E. Hu, P. Liang, B.M. Spiegelman.
AdipoQ is a novel adiposespecific gene dysregulated in obesity.
J Biol Chem, 18 (1996), pp. 10697-10703
[110.]
W.S. Yang, W.J. Lee, T. Funahashi, S. Tanaka, Y. Matsuzawa, C.L. Chao, et al.
Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin.
J Clin Endocrinol Metab, 86 (2001), pp. 3815-3819
[111.]
M.C. Alessi, F. Peiretti, P. Morange, M. Henry, G. Nalbone, I. Juhan-Vague.
Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease.
Diabetes, 46 (1997), pp. 860-867
[112.]
B. Janand-Delenne, C. Chagnaud, D. Raccah, M.C. Alessi, I. Juhan-Vague, P. Vague.
Visceral fat as a main determinant of plasminogen activator inhibitor 1 level in women.
Int J Obes Relat Metab Disord, 22 (1998), pp. 312-317
[113.]
J.B. McGill, D.J. Schneider, C.L. Arfken, C.L. Lucore, B.E. Sobel.
Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients.
Diabetes, 43 (1994), pp. 104-109
[114.]
J. Calles-Escandon, S.A. Mirza, B.E. Sobel, D.J. Schneider.
Induction of hyperinsulinemia combined with hyperglycemia and hypertriglyceridemia increases plasminogen activator inhibitor 1 in blood in normal human subjects.
Diabetes, 47 (1998), pp. 290-293
[115.]
V. Mohamed-Ali, J.H. Pinkney, S.W. Coppack.
Adipose tissue as an endocrine and paracrine organ.
Int J Obes, 22 (1998), pp. 1145-1158
[116.]
A. Tchernof, J.P. Despres, A. Belanger, A. Dupont, D. Prud'homme, S. Moorjani, et al.
Reduced testosterone and adrenal C19 steroid levels in obese men.
Metabolism, 44 (1995), pp. 513-519
[117.]
H. Masuzaki, J. Paterson, H. Shinyama, N.M. Morton, J.J. Mullins, J.R. Seckl, et al.
A transgenic model of visceral obesity and the metabolic syndrome.
Science, 294 (2001), pp. 2166-2170
[118.]
F. Kreier, E. Fliers, P.J. Voshol, C.G. Van Eden, L.M. Havekes, A. Kalsbeek, et al.
Selective parasympathetic innervation of subcutaneous and intra-abdominal fat -functional implications.
J Clin Invest, 110 (2002), pp. 1243-1250
[119.]
D.J. Van der Horst, W.J. Van Marrewijk, J.H. Diederen.
Adipokinetic hormones of insect: release, signal transduction, and responses.
Int Rev Cytol, 211 (2001), pp. 179-240
Copyright © 2003. Sociedad Española de Endocrinología y Nutrición
Article options
Tools
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos