Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Medidas de calidad para la prension de objetos1
Información de la revista
Vol. 5. Núm. 1.
Páginas 66-82 (Enero 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 5. Núm. 1.
Páginas 66-82 (Enero 2008)
Open Access
Medidas de calidad para la prension de objetos1
Visitas
2857
Maximo Roa2, Raul Suàrez, Jordi Cornelia3
Instituto de Organization y Control de Sistemas Industriales (IOC) Universidad Politècnica de Cataluna (UPC) Barcelona, Espana
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La prensión correcta de objetos es un aspecto clave para la ejecucion de muchas tareas. En robòtica, el desarrollo de elementos prensores cada vez mas complejos y versàtiles, como manos mecànicas, incrementa la necesidad de disponer de algoritmos para la determinacion automàtica de prensiones, surgiendo de forma paralela la necesidad de cuantificar su calidad de cara a su optimización. En este articulo se presenta una revision de las medidas de calidad propuestas en la literatura especializada para evaluar la calidad de una prensión. Las medidas de calidad se clasifican en dos grupos segun el aspecto principal evaluado: la localization de los puntos de contacto sobre el objeto o la configuration de la mano mecànica. También se revisan los enfoques que combinan diferentes medidas de calidad de los dos grupos anteriores para obtener una medida de calidad global.

Palabras clave:
prensión
manos mecànicas
medidas de calidad para prensiones
El Texto completo está disponible en PDF
Referencias
[Bekey et al., 1993]
G. Bekey, H. Liu, R. Tomovic, W. Karplus.
Knowledge-based control of grasping in robot hands using heuristics from human motor skills.
IEEE Trans. Robotics and Automation, 9 (1993), pp. 709-722
[Bicchi, 1995]
A. Bicchi.
On the closure properties of robotic grasping.
Int. J. Robotics Research, 14 (1995), pp. 319-344
[Bicchi, 2000]
A. Bicchi.
Hands for dexterous manipulation and robust grasping: A difficult road towards simplicity.
IEEE Trans. Robotics and Automation, 16 (2000), pp. 652-662
[Bicchi and Kumar, 2000]
A. Bicchi, V. Kumar.
Robotic grasping and contact: A review.
Proc. IEEE ICRA 2000, pp. 348-352
[Boivin et al., 2004]
E. Boivin, I. Sharf, M. Doyon.
Optimum grasp of planar and revolute objects with gripper geometry constraints.
Proc. IEEE ICRA 2001, pp. 326-332
[Bone and Du, 2001]
G. Bone, Y. Du.
Multi-metric comparison of optimal 2D grasp planning algorithms.
Proc. IEEE ICRA 2001, pp. 3061-3066
[Borst et al., 1999]
Ch. Borst, M. Fischer, G. Hirzinger.
A fast and robust grasp planner for arbitrary 3D objects.
Proc. IEEE ICRA 1999, pp. 1890-1896
[Borst et al., 2003]
Ch. Borst, M. Fischer, G. Hirzinger.
Grasping the dice by dicing the grasp.
Proc. IEEE/RSJ IROS 2003, pp. 3692-3697
[Borst et al., 2004]
Ch. Borst, M. Fischer, G. Hirzinger.
Grasp planning: How to choose a suitable task wrench space.
Proc. IEEE ICRA 2004, pp. 319-325
[Bowers and Lumia, 2003]
D. Bowers, R. Lumia.
Manipulation of unmodeled objects using intelligent grasping schemes.
IEEE Trans. on Fuzzy Systems, 11 (2003), pp. 320-329
[Brost and Goldberg, 1996]
R. Brost, K.Y. Goldberg.
A complete algorithm for designing planar fixtures using modular components.
IEEE Trans. Robotics and Automation, 12 (1996), pp. 31-46
[Bruyninckx et al., 1998]
H.S. Bruyninckx, V. Demey, Kumar.
Generalized stability of compliant grasps.
Proc. IEEE ICRA 1998, pp. 2396-2402
[Buss et al., 1995]
M.H. Buss, J.B. Hashimoto, Moore.
Grasping force optimization for multi-fingered robot hands.
Proc. IEEE ICRA 1995, pp. 1034-1039
[Buss et al., 1996]
M.H. Buss, J.B. Hashimoto, Moore.
Dextrous hand grasping force optimization.
IEEE Trans. Robotics and Automation, 12 (1996), pp. 406-418
[Chinellato et al., 2005]
E. Chinellato, A. Morales, R. Fisher, A.P. del Pobil.
Visual quality measures for characterizing planar robot grasps.
IEEE Trans. Systems, Man and Cybernetics - Part C: Applications and Reviews, 35 (2005), pp. 30-41
[Chinellato et al., 2003]
E. Chinellato, R. Fisher, A. Morales, A.P. del Pobil.
Ranking planar grasp configurations for a three-finger hand.
Proc IEEE ICRA 2003, pp. 1133-1138
[Chiu, 1987]
S.L. Chiu.
Control of redundant manipulators for task compatibility.
Proc. IEEE ICRA 1987, pp. 1718-1724
[Chiu, 1988]
S.L. Chiu.
Task compatibility of manipulator postures.
Int. J. Robotics Research, 7 (1988), pp. 13-21
[Cornelia and Suàrez, 2003]
J. Cornelia, R. Suàrez.
On 2D 4-finger frictionless optimal grasps.
Proc. IEEE/RSJ IROS 2003, pp. 3680-3685
[Cornelia and Suàrez, 2005a]
J. Cornelia, R. Suàrez.
Determining independent grasp regions on 2D discrete objects.
Proc. IEEE/RSJ IROS 2005, pp. 2936-2941
[Cornelia and Suàrez, 2005b]
J. Cornelia, R. Suàrez.
Fast and flexible determination of force-closure independent regions to grasp polygonal objects.
Proc. IEEE ICRA 2005, pp. 778-783
[Cutkosky, 1989]
M.R. Cutkosky.
On grasp choice, grasp models, and the design of hands for manufacturing tasks.
IEEE Trans. Robotics and Automation, 5 (1989), pp. 269-279
[Ding et al., 2001]
D.Y.H. Ding, S. Liu, Wang.
Computation of 3-D form-closure grasps.
IEEE Trans. Robotics and Automation, 17 (2001), pp. 515-522
[Ferrari and Canny, 1992]
C. Ferrari, J. Canny.
Planning optimal grasps.
Proc. IEEE ICRA 1992, pp. 2290-2295
[Grupen et al., 1989]
R. Grupen, T. Henderson, I. McCammon.
A survey on general purpose manipulation.
Int. J. Robotics Research, 8 (1989), pp. 38-62
[Han et al., 2000]
L. Han, J.C. Trinkle, Z.X. Li.
Grasp analysis as linear matrix inequality problems.
IEEE Trans. Robotics and Automation, 16 (2000), pp. 663-674
[Haschke et al., 2005]
R. Haschke, J.J. Steil, I. Steuwer, H. Ritter.
Task-oriented quality measures for dextrous grasping.
Proc. 6th IEEE Int. Conf. Computational Intelligence in Robotics and Automation, pp. 689-694
[Helmke et al., 2002]
U. Helmke, K. Huper, J.B. Moore.
Quadraticaly convergent algorithms for optimal dextrous hand grasping.
IEEE Trans. Robotics and Automation, 18 (2002), pp. 138-146
[Hester et al., 1999]
R.D. Hester, M. Cetin, C. Kapoor, D. Tesar.
A criteria-based approach to grasp synthesis.
Proc. IEEE ICRA 1999, pp. 1255-1260
[Howard and Kumar, 1996]
W.S. Howard, V. Kumar.
On the stability of grasped objects.
IEEE Trans. Robotics and Automation, 12 (1996), pp. 904-917
[Howe et al., 1988]
R.D. Howe, I. Kao, M.R. Cutkosky.
The sliding of robot fingers under combined torsion and shear loading.
Proc. IEEE ICRA 1988, pp. 103-105
[Kerr and Roth, 1986]
J. Kerr, B. Roth.
Analysis of multifin-gered robot hands.
Int. J. Robotics Research, 4 (1986), pp. 3-17
[Kim et al., 2004]
B. Kim, B. Yi, S. Oh, I.H. Sung.
Non-dimensionalized performance indices based optimal grasping for multi-fingered hands.
Mechatronics, 14 (2004), pp. 255-280
[Kim et al., 2001]
B. Kim, S. Oh, B. Yi, I.H. Suh.
Optimal grasping based on non-dimensionalized performance indices.
Proc. IEEE IROS 2001, pp. 949-956
[Kirkpatrick et al., 1992]
D.G. Kirkpatrick, B. Mishra, C. Yap.
Quantitative Steinitz's theorem with applications to multifingered grasping.
Discrete and Computational Geometry, 7 (1992), pp. 295-318
[Klein and Blaho, 1987]
C.A Klein, B.E. Blaho.
Dexterity measures for the design and control of kine-matically redundant manipulator.
Int. J. Robotics Research, 6 (1987), pp. 72-83
[Leoni et al., 1998]
F. Leoni, M. Guerrini, C. Laschi, D. Taddeucci, P. Dario, A. Starita.
Implementing robotic grasping tasks using a biological approach.
Proc. IEEE ICRA 1998, pp. 2274-2280
[Li et al., 2002]
Y. Li, Y. Yu, S. Tsujio.
An analytical grasp planning on given object with multifingered hand.
Proc. IEEE ICRA 2002, pp. 3749-3754
[Li and Sastry, 1988]
Z. Li, S. Sastry.
Task-oriented optimal grasping by multifingered robotic hands.
IEEE J. Robotics and Automation, 4 (1988), pp. 32-44
[Liegeois, 1977]
A. Liegeois.
Automatic supervisory control for the configuration and behavior of multibody mechanisms.
IEEE Trans. System, Man and Cybernetics, 7 (1977), pp. 842-868
[Lin et al., 1997]
Q. Lin, J. Burdick, E. Rimon.
A quality measure for compliant grasps.
Proc. IEEE ICRA 1997, pp. 86-92
[Liu et al., 2004a]
G. Liu, J. Xu, Z. Li.
On geometric algorithms for real-time grasping force optimization.
IEEE Trans. Control Systems Technology, 12 (2004), pp. 843-859
[Liu et al., 2004b]
G. Liu, J. Xu, X. Wang, Z. Li.
On quality functions for grasp synthesis, fixture planning and coordinated manipulation. IEEE Trans.
Automation Science and Engineering, 1 (2004), pp. 146-162
[Liu et al., 2004c]
Y. Liu, M. Lam, D. Ding.
A complete and efficient algorithm for searching 3-D form closure grasps in the discrete domain. IEEE Trans.
Robotics, 20 (2004), pp. 805-816
[Liu, 2000]
Y.H. Liu.
Computing n-finger form-closure grasps on polygonal objects.
Int. J. Robotics Research, 19 (2000), pp. 149-158
[Lotti and Vassura, 2002]
F. Lotti, G. Vassura.
Design aspects for advanced robot hands: Mechanical design.
Tutorial: Towards Intelligent Robotic Manipulation, IEEE/RSJ IROS 2002, pp. 1-16
[Miller and Allen, 1999]
A. Miller, P. Allen.
Examples of 3D grasp quality computations.
Proc. IEEE ICRA 1999, pp. 1240-1246
[Miller and Allen, 2004]
A. Miller, P. Allen.
GraspIt! a versatile simulator for robotic grasping.
IEEE Robotics and Automation Magazine, 11 (2004), pp. 110-122
[Mirtich and Canny, 1994]
B. Mirtich, J. Canny.
Easily computable optimum grasps in 2D and 3D.
Proc. IEEE ICRA 1991, pp. 739-747
[Mishra, 1995]
B. Mishra.
Grasp metrics: Optimality and complexity.
Algorithmic Foundations of Robotics, pp. 137-166
[Mishra and Silver, 1989]
B. Mishra, N. Silver.
Some discussion of static gripping and its stability.
IEEE Trans. on Systems, Man, and Cybernetics, 19 (1989), pp. 783-796
[Mishra et al., 1987]
B. Mishra, J.T. Schwartz, M. Sharir.
On the existence and synthesis of multifinger positive grips.
Algorithmica, 2 (1987), pp. 541-558
[Morales et al., 2002]
A. Morales, P.J. Sanz, A.P. del Pobil, A.H. Fagg.
An experiment in constraining vision-based finger contact selection with gripper geometry.
Proc. IEEE/RSJ IROS 2002, pp. 1693-1698
[Murray et al., 1994]
R.M. Murray, Z. Li, S. Sastry.
A Mathematical Introduction to Robotic Manipulation.
CRC Press. Boca Raton, (1994),
[Nguyen, 1988]
V.D. Nguyen.
Constructing force-closure grasps.
Int. J. Robotics Research, 7 (1988), pp. 3-16
[Okamura et al., 2000]
A. Okamura, N. Smaby, M. Cutkosky.
An overview of dexterous manipulation.
Proc. IEEE ICRA 2000, pp. 255-262
[Park and Starr, 1992]
Y.C. Park, G.P. Starr.
Grasp synthesis of polygonal objects using a three-fingered robotic hand.
Int. J. Robotics Research, 11 (1992), pp. 163-184
[Pollard, 1996]
N.S. Pollard.
Synthesizing grasps from generalized prototypes.
Proc. IEEE ICRA 1996, pp. 2124-2130
[Pollard, 2004]
N.S. Pollard.
Closure and quality equivalence for efficient synthesis of grasps from examples.
Int. J. Robotics Research, 23 (2004), pp. 595-614
[Ponce and Faverjon, 1995]
J. Ponce, B. Faverjon.
On computing three-finger force-closure grasps of polygonal objects.
IEEE Trans. Robotics and Automation, 11 (1995), pp. 868-881
[Ponce et al., 1997]
J. Ponce, S. Sullivan, A. Sudsang, J.D. Boissonat, J.P. Merlet.
On computing four-finger equilibrium and force-closure grasps of polyhedral objects.
Int. J. Robotics Research, 16 (1997), pp. 11-35
[Rimon and Burdick, 1996]
E. Rimon, J. Burdick.
On force and form closure for multiple finger grasps.
Proc. IEEE ICRA 1996, pp. 1795-1800
[Roa and Suarez, 2007]
M. Roa, R. Suarez.
Geometrical approach for grasp synthesis on discretized 3D objects.
Proc. IEEE/RSJ IROS, pp. 2007
[Salisbury and Craig, 1982]
J.K. Salisbury, J.J. Craig.
Articulated hands: Force control and kinematic issues.
Int. J. Robotics Research, 1 (1982), pp. 4-17
[Shimoga, 1996]
K.B. Shimoga.
Robot grasp synthesis algorithms: A survey.
Int. J. Robotics Research, 15 (1996), pp. 230-266
[Stam et al., 1992]
D. Stam, J. Ponce, B. Faverjon.
A system for planning and executing two-finger force-closure grasps on curved 2-D objects.
Proc. IEEE/RSJ IROS 1992, pp. 210-217
[Tegin and Wikander, 2005]
J. Tegin, J. Wikander.
Tactile sensing in intelligent robotic manipulation - a review.
Industrial Robot, 32 (2005), pp. 64-70
[Teichmann, 1996]
M. Teichmann.
A grasp metric invariant under rigid motions.
Proc. IEEE ICRA 1996, pp. 2143-2148
[Teichmann and Mishra, 1997]
M. Teichmann, B. Mishra.
The power of friction: Quantifying the “goodness” of fric-tional grasps. In: Algorithms for Robotic Motion and Manipulation.
A.K. Peters. Welles-ley, MA, (1997),
[Wang, 2000]
M.Y. Wang.
An optimum design for 3-D fixture synthesis in a point set domain.
IEEE Trans. Robotics and Automation, 16 (2000), pp. 839-846
[Xydas and Kao, 1999]
N. Xydas, I. Kao.
Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics with experimental results.
Int. J. Robotics Research, 18 (1999), pp. 941-950
[Yoshikawa, 1984]
T. Yoshikawa.
Analysis and control of robot manipulators with redundancy.
Proc. 1st Int. Symposium of Robotic Research, pp. 735-747
[Yoshikawa, 1985]
T. Yoshikawa.
Manipulability of robotic mechanisms.
Int. J. Robotics Research, 4 (1985), pp. 3-9
[Zhu and Wang, 2003]
X. Zhu, J. Wang.
Synthesis of force-closure grasps on 3-D objects based on the Q distance.
IEEE Trans. Robotics and Automation, 19 (2003), pp. 669-679
[Zhu et al., 2001]
X. Zhu, H. Ding, H. Li.
A quantitative measure for multifingered grasps.
Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics 2001, pp. 213-219

Este trabajo ha sido parcialmente financiado por los pro- yectos CICYT DPI2005-00112 y DPI2007-63665, y Acción Integrada HI2005-0290.

Maximo Roa es profesor en la Universidad Nacional de Colombia; actualmente trabaja en el IOC-UPC financiado por el programa Al/3an, beca No. E04D039103CO.

Jordi Cornelia es actualmente “Marie Curie Experienced Researcher” en The Interventional Centre, Rikshospitalet University Hospital - University of Oslo, Oslo (Norway).

Copyright © 2008. Elsevier España, S.L.. Todos los derechos reservados
Opciones de artículo
Herramientas