metricas
covid
Buscar en
Cirugía Española
Toda la web
Inicio Cirugía Española Cirugía experimental y obesidad mórbida
Información de la revista
Vol. 75. Núm. 2.
Páginas 56-63 (febrero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 75. Núm. 2.
Páginas 56-63 (febrero 2004)
Acceso a texto completo
Cirugía experimental y obesidad mórbida
Experimental surgery and morbid obesity
Visitas
5978
Fàtima Sabencha, Mercè Hernándezb, Santiago Blancob, Daniel del Castillob,1
Autor para correspondencia
ddelcastillo@grupsgs.com

Correspondencia: Dr. D. del Castillo. Servicio de Cirugía. Hospital Universitari Sant Joan de Reus. Sant Joan, s/n. 43201 Reus. Tarragona. España.
a Unidad de Cirugía. Facultad de Medicina y Ciencias de la Salud. Universitat Rovira i Virgili. Reus. Tarragona.
b Servicio de Cirugía. Hospital Universitari Sant Joan de Reus. Unidad de Cirugía. Facultad de Medicina y Ciencias de la Salud. Universitat Rovira i Virgili. Reus. Tarragona. España.
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Se lleva a cabo un estudio de la evolución de la cirugía bariátrica experimental en animales de laboratorio y se determinan las necesidades actuales en este campo para el seguimiento de nuevas líneas de investigación.

Se hace una revisión de los trabajos experimentales sobre cirugía de la obesidad mórbida desde la última mitad del siglo xx, según las diferentes técnicas existentes (malbsortivas, restrictivas, mixtas y experimentales). Las fuentes de información utilizadas han sido las búsquedas en la National Library of Medicine (PubMed).

Se observa una clara tendencia a la utilización de animales de gran tamaño (cerdos) para el perfeccionamiento técnico, en especial de la laparoscopia. Una segunda dirección en la experimentación animal se centra en determinar un nexo metabolicoquirúrgico, que determinaría una mejoría de las comorbilidades. Por último, una tercera línea de investigación estaría centrada en la manipulación de la ingesta a partir de control central y vagal.

Se necesitan estudios en que se combine la cirugía experimental en animales de laboratorio con los mecanismos que determinan su fisiopatología, su metabolismo y los que regulan su ingesta, tanto en las técnicas que están aplicadas a la práctica clínica como en las que están en fase experimental. Es necesario que los trabajos se realicen con animales obesos para conocer con exactitud los patrones metabólicos y evitar conclusiones erróneas sobre los mecanismos de la pérdida de peso.

Palabras clave:
Obesidad mórbida
Cirugía bariátrica
Cirugía experimental

To study the development of experimental bariatric surgery in laboratory animals and to determine present needs in this field so that new lines of research can be opened up.

We reviewed the experimental studies performed in the field of morbid obesity surgery since the second half of the twentieth century. Each of the existing surgical techniques (malabsorptive, restrictive, mixed and experimental) was reviewed. The source of information was the National Library of Medicine (PubMed).

There is a clear tendency to use large animals (pigs) for perfecting technique, particularly in laparoscopy. A second focus in animal experimentation is to determine a metabolic-surgical nexus that would improve comorbidities. Finally, a third research area focuses on manipulating intake by central and vagal control.

Studies should be undertaken that combine experimental surgery on laboratory animals with the mechanisms that determine their physiopathology and metabolism and regulate their intake, using both experimental techniques and techniques that are already being used in clinical practice. These studies should be performed in obese animals so that metabolic patterns are accurately characterized and erroneous conclusions are not drawn about the mechanisms of weight loss.

Key words:
Morbid obesity
Bariatric surgery
Experimental surgery
El Texto completo está disponible en PDF
Bibliografía
[1.]
S. Greenway, S. Klein.
Effects of obesity surgery on non insulin dependent diabetes mellitus.
Arch Surg, 137 (2002), pp. 1109-1117
[2.]
K.M. Flegal, M.D. Carroll, C.L. Odgen, C.L. Johnson.
Prevalence and trends in obesity among US adults, 1999-2000.
JAMA, 288 (2002), pp. 1723-1727
[3.]
A.M. Wolf, G.A. Colditz.
Current estimates of the economic cost of obesity in the United States.
Obes Res, 6 (1998), pp. 97-106
[4.]
R.E. Brolin.
Bariatric surgery and long-term control of morbid obesity.
JAMA, 288 (2002), pp. 2793-2796
[5.]
A. Geliebter, S. Westreich, D. Gage, S.A. Hashim.
Intragastric balloon reduces food intake and body weight in rats.
Am J Physiol, 2514 (1986), pp. R794-R797
[6.]
A. Geliebter, S. Westreich, S.A. Hashim, D. Gage.
Gastric balloon reduces food intake and body weight in obese rats.
Physiol Behav, 39 (1987), pp. 399-402
[7.]
Y. Yang, H. Kuwano, Y. Okudaira, A.M. Kholoussy, T. Matsumoto.
Use of intragastric balloons for weight reduction. An experimental study.
Am J Surg, 153 (1987), pp. 265-269
[8.]
L.I. Kuzmac.
Silicone gastric banding: a simple and efective operation for morbid obesity.
Contemp Surg, 28 (1986), pp. 13-18
[9.]
J.C. Coelho, J.H. Solhaug, F.G. Moody, Y.F. Li.
Experimental evaluation of gastric banding for treatment of morbid obesity in pigs.
Am J Surg, 149 (1985), pp. 228-231
[10.]
A. Skarstein, J. Lekven.
Influence of gastric banding on stomach blood supply with or without concurrent splenectomy.
Am J Surg, 149 (1985), pp. 351-356
[11.]
R. Badura, A. Buczek, J. Bieniek, C. Kaszubkiewicz, L. Oleszkiewicz, W. Wiercinski.
The effect of gastric banding on body weight in experimental animals.
Pol Arch Weter, 27 (1987), pp. 5-14
[12.]
G. Szinicz, L. Muller, W. Erhart, F.X. Roth, R. Pointner, K. Glaser.
“Reversible gastric banding” in surgical treatment of morbid obesityresults of animal experiments.
Res Exp Med (Berl), 189 (1989), pp. 55-60
[13.]
M. Belachew, M.J. Legrand, V. Vincent.
History of Lap-Band: from dream to reality.
Obes Surg, 11 (2001), pp. 297-302
[14.]
M. Belachew, M. Legrand, V. Vincent, M. Lismonde, N. Le Docte, V. Deschamps.
Laparoscopic adjustable gastric banding.
World J Surg, 22 (1998), pp. 955-963
[15.]
E.E. Mason.
Vertical banded gastroplasty.
Arch Surg, 117 (1982), pp. 701-706
[16.]
E.C. Ellison, E.W. Martin, J. Laschinger, C. Mojzisik, K. Hughes, L.C. Carey, W.G. Pace.
Prevention of early failure of stapled gastric partitions in treatment of morbid obesity.
Arch Surg, 115 (1980), pp. 528-533
[17.]
R.E. Brolin, M.M. Ravitch.
Experimental evaluation of thecniques of gastric partitioning for morbid obesity.
Surg Gynecol Obstet, 153 (1981), pp. 877-882
[18.]
Y. Okudaira, Y. Yang, A.M. Kholoussy, T. Matsumoto.
The healing and tensile strength of the gastroplasty staple line. An experimental study.
Am Surg, 50 (1984), pp. 564-568
[19.]
E.A. Young, M.M. Taylor, M.K. Taylor, A.S. McFee, O.L. Miller, C.A. Gleiser.
Gastric stapling for morbid obesity: gastrointestinal response in a rat model.
Am J Clin Nutr, 40 (1984), pp. 293-302
[20.]
R.E. Brolin.
Laboratory evaluation of four techniques of stapled gastroplasty.
Surgery, 97 (1985), pp. 66-71
[21.]
M.K. Bluett, D.A. Healy, G.C. Kalemeris, J.P. O’Leary.
Experimental evaluation of staple lines in gastric surgery.
Arch Surg, 122 (1987), pp. 772-776
[22.]
P.L. Harris, B.E. Freedman, K.I. Bland, G.J. Miller, J.M. Seeger, E.R. Woodward.
Collagen content, histology, and tensile strength: determinants of wound repair in various gastric stapling devices in a canine gastric partition model.
J Surg Res, 42 (1987), pp. 411-417
[23.]
W.H. Marx, J.D. Halverson.
Laparoscopic anterior gastroplasty. A preliminary report of a new technique.
Surg Endosc, 12 (1998), pp. 1442-1444
[24.]
T.T. Zittel, J. Glatzle, T. Weimar, M.E. Kreis, H.E. Raybould, H.D. Becker, E.C. Jehle.
Serotonin receptor blockade increases food intake and body weight after total gastrectomy in rats.
J Surg Res, 106 (2002), pp. 273-281
[25.]
T.T. Zittel, J. Glatzle, M. Muller, M.E. Kreis, H.D. Becker, E.C. Jehle.
Total gastrectomy severely alters the central regulation of food intake in rats.
[26.]
E.E. Mason, C. Ito.
Gastric bypass in obesity.
Surg Clin North Am, 47 (1967), pp. 1345-1351
[27.]
W.O. Griffen, V.L. Young, C.C. Stevenson.
A prospective comparison of gastric and jejunoileal bypass operation for morbid obesity.
Ann Surg, 186 (1977), pp. 500-507
[28.]
A. Sclafani.
Effects of gastrointestinal surgery on ingestive behavior in animals.
Gastroenterol Clin North Am, 16 (1987), pp. 461-477
[29.]
R.E. Brolin, J.H. Gorman, R.P. Cody.
Long limb gastric bypass in the superobese: a prospective randomized study.
Ann Surg, 215 (1992), pp. 387-395
[30.]
A.C. Wittgrove, G.W. Clarck, L.J. Tremblay.
Laparoscopic gastric bypass, Roux-en-Y: Preliminary report of five cases.
Obes Surg, 4 (1994), pp. 353-357
[31.]
C.T. Frantzides, M.A. Carlson, W.J. Schulte.
Laparoscopic gastric bypass in a porcine model.
J Laparoendosc Surg, 5 (1995), pp. 97-100
[32.]
M. Potvin, M. Gagner, A. Pomp.
Laparoscopic Roux-en-Y gastric bypass for morbid obesity: a feasibility study in pigs.
Surg Laparosc Endosc, 7 (1997), pp. 294-297
[33.]
J.C. Cagigas, E. Martino, C.F. Escalante, A. Ingelmo, R. Estefania, J.M. Gutiérrez, et al.
Technical alternatives in laparoscopic distal gastric bypass for morbid obesity in a porcine model.
Obes Surg, 9 (1999), pp. 166-170
[34.]
D.J. Scott, D.A. Provost, S.T. Tesfay, D.B. Jones.
Laparoscopic Roux-en- Y gastric bypass using the porcine model.
Obes Surg, 11 (2001), pp. 46-53
[35.]
Y. Xu, K. Ohinata, M.M. Meguid, W. Marx, T. Tada, C. Chen, et al.
Gastric bypass model in the obese rat to study metabolic mechanisms of weight loss.
J Surg Res, 107 (2002), pp. 56-63
[36.]
N. Scopinaro, E. Gianetta, D. Civalleri, U. Bonalumi, V. Bachi.
Biliopancreatic bypass for obesity: An experimental study in dogs.
Br J Surg, 66 (1979), pp. 613-617
[37.]
S. Evrard, M. Aprahamian, E. Loza, M. Guerrico, J. Marescaux, C. Damge.
Malnutrition and body weight loss after biliopancreatic bypass in the rat.
Int J Obes, 15 (1991), pp. 51-58
[38.]
A.C. Levi, F. Borghi, R. Petrino, A. Bargoni, C.M. Fronticelli, S. Gentilli.
Modifications of the trophism of intestinal mucosa after intestinal and bpd in the rat.
Ital J Gastroenterol, 23 (1991), pp. 202-207
[39.]
S. Evrard, M. Aprahamian, A. Hoeltzel, M. Vasilescu, J. Marescaux, C. Damge.
Trophic and enzymatic adaptation of the intestine to biliopancreatic bypass in the rat.
Int J Obes Relat Metab Disord, 17 (1993), pp. 541-547
[40.]
T. Gasslander, M. Chu, S. Smeds, I. Ihse.
Proliferative response of different exocrine pancreatic cells after surgical pancreaticobiliary diversion in the rat.
Scand J Gastroenterol, 26 (1991), pp. 399-404
[41.]
P. Marceau, S. Biron, R.A. Bourque.
Biliopancreatic diversion with a new tipe of gastrectomy.
Obes Surg, 3 (1993), pp. 29-35
[42.]
D.W. Hess, D.S. Hess.
Biliopancreatic diversion with a duodenal switch.
Obes Surg, 8 (1998), pp. 267-282
[43.]
J. De Csepel, S. Burpee, G. Jossart, V. Andrei, Y. Murakami, S. Benavides, et al.
Laparoscopic biliopancreatic diversion with a duodenal switch for morbid obesity: a feasibility study in pigs.
J Laparoendosc Adv Surg Tech A, 11 (2001), pp. 79-83
[44.]
H.S. Koopmans, A. Scalfani, C. Fichtner, P.F. Aravich.
The effects of ileal transposition on food intake and body weight loss in VMH obese rats.
Am J Clin Nutr, 35 (1982), pp. 284-293
[45.]
R.L. Atkinson, J.H. Whipple, S.H. Atkinson, C.C. Stewart.
Role of the small bowel in regulating food intake in rats.
Am J Physiol, 242 (1982), pp. R429-R433
[46.]
G.L. Ferri, H.S. Koopmans, M.A. Ghatei, P. Vezzadini, G. Labo, S.R. Bloom, J.M. Polak.
Ileal enteroglucagon cells after ileal-duodenal transposition in the rat.
Digestion, 26 (1983), pp. 10-16
[47.]
H. Koopmans, G.L. Ferri, D.L. Sarson, J.M. Polack, S.R. Bloom.
The effects of ileal transposition and jejunoileal bypass on food intake and GI hormone levels in rats.
Physiol Behav, 33 (1984), pp. 601-609
[48.]
D.P. Kotler, H. Koopmans.
Preservation of intestinal estructure and function despite weight loss produced by ileal transposition in rats.
Physiol Behav, 32 (1984), pp. 423-427
[49.]
W.B. Smithy, C.L. Cuadros, H. Johnson, J.G. Kral.
Effects of ileal transposition on body weight and intestinal morphology in dogs.
Int J Obes, 10 (1986), pp. 453-460
[50.]
M. Toda, I. Sasaki, H. Naito, Y. Funayama.
Effect of ileo-jejunal transposition on intestinal structure, plasma enteroglucagon level and evoked potential difference in dogs.
Nippon Geka Gakkai Zasshi, 91 (1990), pp. 360-372
[51.]
C.N. Boozer, P.S. Choban, R.L. Atkinson.
Ileal transposition surgery attenuates the increased efficiency of weight gain on a fat high diet.
Int J Obes, 14 (1990), pp. 869-878
[52.]
D.C. Chen, J.S. Stern, R.L. Atkinson.
Effects of ileal transposition on food intake, dietary preference, and weight gain in zucker obese rats.
Am J Physiol, 258 (1990), pp. R269-R273
[53.]
T. Tsuchiya, T. Kalogeris, P. Tso.
Ileal transposition into the upper jejunum affects lipid and bile salt absortion in rats.
Am Physiol Soc, 6 (1996), pp. 681-690
[54.]
M.A. Nauck, N. Kleine.
Normalisation of fasting hyperglicaemia by exogenous glucagon like peptide 1 in type 2 diabetic patients.
Diabetologia, 36 (1993), pp. 741-744
[55.]
E. Mason.
Ilial transposition and enteroglucagon in obesity (and diabetic) surgery.
Obes Surg, 9 (1999), pp. 223-228
[56.]
H.R. Berthoud, B. Jeanrenaud.
Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats.
Endocrinology, 105 (1979), pp. 146-151
[57.]
A. Sclafani, P.F. Aravich, M. Landman.
Vagotomy blocks hypothalamic hyperphagia in rats on a chow diet and sucrose solution, but not on a palatable mixed diet.
J Comp Physiol Psychol, 95 (1981), pp. 720-734
[58.]
I.L. Bernstein, L.E. Goehler.
Vagotomy produces learned food aversions in the rat.
Behav Neurosci, 97 (1983), pp. 585-594
[59.]
V.V. Cigaina, A. Saggioro, V.V. Rigo, G. Pinato, S. Ischai.
Long-term effects of gastric pacing to reduce feed intake in swine.
Obes Surg, 6 (1996), pp. 250-253
[60.]
V.V. Cigaina, G. Pinato, V.V. Rigo, M. Bevilacqua, F. Ferraro, S. Ischia, et al.
Gastric peristalsis control by mono situ electrical stimulation: a preliminary study.
Obes Surg, 6 (1996), pp. 247-249
[61.]
S.L. Balbo, P.C. Mathias, M.L. Bonfleur, H.F. Alves, F.J. Siroti, O.G. Monteiro, et al.
Vagotomy reduces obesity in MSG-treated rats.
Res Commun Mol Pathol Pharmacol, 108 (2000), pp. 291-296
[62.]
R. Reddy, J. Horowitz, M. Roslin.
Chronic bilateral vagus nerve stimulation VNS changes eating behavior resulting in weight loss in a canine model.
Surg Forum, 51 (2000), pp. 24-26
[63.]
G. Krolczyk, D. Zurowski, J. Sobocki, M.P. Slowiaczek, J. Laskiewicz, A. Matyja.
Effects of continuous microchip (MC) vagal neuromodulation on gastrointestinal function in rats.
J Physiol Pharmacol, 52 (2001), pp. 705-715
[64.]
J. Sobocki, P.J. Thor, J. Uson, I. Díaz-Guemes, M. Lipinski, C. Calles, S. Pascual.
Microchip vagal pacing reduces food intake and body mass.
Hepatogastroenterology, 48 (2001), pp. 1783-1787
[65.]
J. Sobocki, P. Thor, G. Krolczyk, J. Uson, I. Díaz-Guemes, M. Lipinski.
The cybergut. An experimental study on permanent microchip neuromodulation for control of gut function.
Acta Chir Belg, 102 (2002), pp. 68-70
[66.]
D. Gui, A. De Gaetano, P.L. Spada, A. Viggiano, E. Cassetta, A. Albanese.
Botulinum toxin injected in the gastric wall reduces body weight and food intake in rats.
Aliment Pharmacol Ther, 14 (2000), pp. 829-834
Copyright © 2004. Asociación Española de Cirujanos
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.ciresp.2023.05.009
No mostrar más