Buscar en
Boletín de la Sociedad Española de Cerámica y Vidrio
Toda la web
Inicio Boletín de la Sociedad Española de Cerámica y Vidrio Development of sustainable calcium silicate board: Utilization of different soli...
Journal Information
Vol. 58. Issue 6.
Pages 274-284 (November - December 2019)
Download PDF
More article options
Vol. 58. Issue 6.
Pages 274-284 (November - December 2019)
DOI: 10.1016/j.bsecv.2019.06.003
Open Access
Development of sustainable calcium silicate board: Utilization of different solid wastes
Desarrollo de tableros de silicato de calcio sostenibles: utilización de diferentes residuos sólidos
S.K.S. Hossain
Corresponding author
, P.K. Roy
Department of Ceramic Engineering, IIT (BHU), Varanasi 221005, U.P., India
Article information
Full Text
Download PDF
Figures (8)
Show moreShow less
Tables (6)
Table 1. Chemical composition of raw materials.
Table 2. Sample's nomenclature and composition.
Table 3. Apparent porosity, bulk density, water absorption and expansion in water of cured CSB samples.
Table 4. Compressive strength, bending strength, humidity effect and thermal conductivity of cured CB samples.
Table 5. Comparison of properties between s-5 sample and obtained in the literature using other wastes.
Table 6. Comparison of properties between s-5 sample and company data [55].
Show moreShow less

The present investigation aims to estimate the feasibility of using eggshell and rice husk ash (RHA) as ingredients to produce calcium silicate board (CSB). The solid-state route was used to prepare the calcium silicate (CS) powder through the mixing of heat treated RHA (∼93% SiO2) and calcined eggshells (∼99% CaO) at 1050°C. CSB specimens were prepared at room temperature by simple curing process followed by mixing of different proportions of CS powder, ordinary portland cement (OPC) and unground rice husk ash (URHA). Several physicals, mechanical and thermal characterizations of the cured specimens were performed. The addition of OPC and URHA with CS were significantly influenced all the properties of CSB. The wastes derived CSB was exhibited low density (<1000kg/m3), comparable bending strength (∼6MPa) and low thermal conductivity (<0.153W/mK). These properties suggest that the waste derived board may be used in the internal lining of building for insulation.

Calcium silicate board
Rice husk ash
Humidity effect

La presente investigación tiene como objetivo estimar la viabilidad del uso de la cáscara de huevo y la ceniza de arroz (RHA) como ingredientes para producir placa de silicato de calcio (CSB). La ruta en estado sólido se usó para preparar el polvo de silicato de calcio (CS) a través de la mezcla de RHA tratada térmicamente (∼93% SiO2) y cáscaras de huevo calcinadas (∼99% CaO) a 1.050°C. Las muestras de CSB se prepararon a temperatura ambiente mediante un proceso de curado simple seguido de la mezcla de diferentes proporciones de polvo de CS, cemento Portland normal (OPC) y ceniza de cáscara de arroz sin moler (URHA). Se realizaron varias caracterizaciones físicas, mecánicas y térmicas de los especímenes curados. La adición de OPC y URHA con CS influyó significativamente en todas las propiedades de CSB. Los desechos derivados de CSB mostraron una baja densidad (<1.000kg/m3), una resistencia a la flexión comparable (∼6MPa) y una baja conductividad térmica (<0,153W/m-K). Estas propiedades sugieren que el tablero derivado de residuos se puede utilizar en el revestimiento interno del edificio para aislamiento.

Palabras clave:
Tablero de silicato de calcio
Cáscaras de huevo
Ceniza de cáscara de arroz
Efecto de la humedad
Samples nomenclature

calcium silicate powder


calcium silicate board


rice husk


rice husk ash


unground rice husk ash


ordinary portland cement


X-ray diffraction


scanning electron microscopy


bulk density


apparent porosity


differential thermal and thermogravimetric analysis


humidity effect


thermal conductivity

Full Text
WARNING preg_replace(): Unknown modifier 'p' (includes_ws_v2/librerias/utilidades.php[401])

The authors are grateful to the DIC (IIT (BHU) & BHU), India for the financial assistance and also wish to thank CIFC (IIT BHU) for providing facilities.

J.R. Taylor, A.T. Didsdale.
Thermodynamic and phase diagram data for the CaO–SiO2 system.
Calphad, 14 (1996), pp. 71-88
M. Chen, L. Lu, S. Wang, P. Zhao, W. Zhang, S. Zhang.
Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing.
Constr. Build. Mater., 143 (2017), pp. 280-288
C.C. Chen, C.C. Ho, S.Y. Lin, S.J. Ding.
Green synthesis of calcium silicate bio-ceramic powders.
Ceram. Int., 41 (2015), pp. 5445-5453
V. Krasselt, J. Rank.
Development of a new calcium silicate board with super insulating properties.
Am. Ceram. Soc., John Wiley & Sons, Inc., (2014),
L. Kristanto, H. Sugiharto, S.W.D. Agus, S.A. Pratama.
Calcium silicate board as wall-façade.
Proc. Eng., 171 (2017), pp. 679-688
Calcium Silicate Market – Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016–2023.
F. Heriyanto, V. Pahlevani, Sahajwalla.
Synthesis of calcium silicate from selective thermal transformation of waste glass and waste shell.
J. Clean. Prod., 172 (2018), pp. 3019-3027
A.K. Mandal, H.R. Verma, O.P. Sinha.
Utilization of aluminum plant's waste for production of insulation bricks.
J. Clean. Prod., 162 (2017), pp. 949-957
E.M.M. Ewais, N.H.A. Besisa, A. Ahmed.
Aluminum titanate based ceramics from aluminum sludge waste.
Ceram. Int., 43 (2017), pp. 10277-10287
L.B. Teixeira, V.K. Fernandes, B.G.O. Maia, S. Arcaro, A.P. Novaes de Oliveira.
Vitrocrystalline foams produced from glass and oyster shell wastes.
Ceram. Int., 43 (2017), pp. 6730-6737
J. Pype, B. Michielsen, S. Mullens, V. Meynen.
Impact of inorganic waste fines on structure of mullite microspheres by reaction sintering.
J. Eur. Ceram. Soc., 38 (2018), pp. 2612-2620
L.H. Buruberri, M.P. Seabra, J.A. Labrincha.
Preparation of clinker from paper pulp industry wastes.
J. Hazard. Mater., 286 (2015), pp. 252-260
G. Zhu, H. Li, X. Wang, S. Li, X. Hou, W. Wu, Q. Tang.
Synthesis of calcium silicate hydrate in highly alkaline system.
J. Am. Ceram. Soc., 99 (2016), pp. 2778-2785
F.H.G. Leite, T.F. Almeida, R.T. Faria Jr., J.N.F. Holanda.
Synthesis and characterization of calcium silicate insulating material using avian eggshell waste.
Ceram. Int., 43 (2017), pp. 4674-4679
M. Felipe-Sese, D. Eliche-Quesada, F.A. Corpas-Iglesias.
The use of solid residues derived from different industrial activities to obtain calcium silicates for use as insulating construction materials.
Ceram. Int., 37 (2011), pp. 3019-3028
B. Carrasco-Hurtado, F.A. Corpas-Iglesias, N. Cruz-Pérez, J. Terrados-Cepeda, L. Pérez-Villarejo.
Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties.
Constr. Build. Mater., 52 (2014), pp. 155-165
Z. Cao, Y. Cao, J. Zhang, C. Sun, X. Li.
Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes.
Int. J. Miner. Metal. Mater., 22 (2015), pp. 892-900
Y. Wang, J. Song, Q. Guo, X. Xi, G. Hou, G. Wei, J. Qu.
The environmental sustainability of synthetic wollastonite using waste from zirconium oxychloride production.
J. Clean. Prod., 172 (2018), pp. 2576-2584
K.S. Lokare.
Rising from the Ashes: Renewable Silica from Rice Husk Ash.
R.K. Sandhu, R. Siddique.
Influence of rice husk ash (RHA) on the properties of self-compacting concrete: a review.
Constr. Build. Mater., 153 (2017), pp. 751-764
S. Zafar.
Rice Straw as Bioenergy Resource.
Bio Energy Consult., (March 2015),
A. Bazargan, T. Gebreegziabher, C.W. Hui, G. McKay.
The effect of alkali treatment on rice husk moisture content and drying kinetics.
Biomass Bioenergy, 70 (2014), pp. 468-475
J. Athinarayanan, V.S. Periasamy, M. Alhazmi, K.A. Alatiah, A.A. Alshatwi.
Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications.
Ceram. Int., 41 (2015), pp. 275-281
E.L. Folleto, R. Hoffmann, R.S. Hoffmann, U.L. Portugal, S.L. Jahn.
Applicability of rice husk ash.
Quím. Nova, 28 (2005), pp. 1055-1060
S. Mor, C.K. Manchanda, S.K. Kansal, K. Ravindra.
Nanosilica extraction from processed agricultural residue using green technology.
J. Clean. Prod., 143 (2017), pp. 1284-1290
S.K. Hubadillah, M.H.D. Othmana, A.F. Ismail, M.A. Rahman, J. Jaafar, Y. Iwamoto, S. Honda, M.I.H.M. Dzahir, M.Z.M. Yusop.
Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application.
A. Bhardwaj, S.S. Hossain, M.R. Majhi.
Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste.
Bol. Soc. Esp. Cerám. Vidr., 56 (2017), pp. 256-262
S. Sembiring, W. Simanjuntak, R. Situmeang, A. Riyanto, K. Sebayang.
Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes.
Ceram. Int., 42 (2016), pp. 8431-8437
L. Mathur, S.S. Hossain, M.R. Majhi, P.K. Roy.
Synthesis of nano-crystalline forsterite (Mg2SiO4) powder from biomass rice husk silica by solid-state route.
Bol. Soc. Esp. Cerám. Vidr., 57 (2018), pp. 112-118
S. Sembiring, W. Simanjuntak, P. Manurung, D. Asmi, I.M. Low.
Synthesis and characterization of gel-derived mullite precursors from rice husk silica.
Ceram. Int., 40 (2014), pp. 7067-7072
F.A.A. Azama, R. Shamsudina, M.H. Ngb, A. Ahmadc, M.A.M. Akbarc, Z. Rashidbenam.
Silver-doped pseudowollastonite synthesized from rice husk ash: antimicrobial evaluation, bioactivity and cytotoxic effects on human mesenchymal stem cells.
F. Andreola, M.I. Martın, A.M. Ferrari, I. Lancellotti, F. Bondioli, J.M. Rincon, M. Romero, L. Barbieri.
Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor.
Ceram. Int., 39 (2013), pp. 5427-5435
S.K. Singh, B.C. Mohanty, S. Basu.
Synthesis of SiC from rice husk in a plasma reactor.
Bull. Mater. Sci., 25 (2002), pp. 561-563
D.A. Oliveira, P. Benelli, E.R. Amante.
A literature review on adding value to solid residues: egg shells.
J. Clean. Prod., 46 (2013), pp. 42-47
M.J. Quina, M.A.R. Soares, A.A. Ribeiro, A.P. Marques, I.H. Costa, M.C. Magalhães.
Feasibility study on windrow co-composting to recycle industrial eggshell waste.
Waste Biomass Valor., 5 (2014), pp. 87-95
S.M. Naga, H.H. El-Maghraby, M. Sabed, E.A. Saad.
Highly porous scaffolds made of nanosized hydroxyapatite powder synthesized from eggshell.
J. Ceram. Sci. Technol., 6 (2015), pp. 237-244
G.D. Angelis, L. Medeghini, A.M. Conte, S. Mignardi.
Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater.
J. Clean. Prod., 164 (2017), pp. 1497-1506
A.H.M. Noor, S.H.A. Aziz, S.S.A. Rashid, M.H.M. Zaid, Z.N. Alassan, K.A. Matori.
Synthesis and characterization of wollastonite glass-ceramics from eggshell and waste glass.
J. Solid State Sci. Technol. Lett., 16 (2015), pp. 1-5
P. Pliya, D. Cree.
Limestone derived eggshell powder as a replacement in Portland cement mortar.
Constr. Build. Mater., 95 (2015), pp. 1-9
S.C. Wu, H.C. Hsu, S.K. Hsu, Y.C. Chang, W.F. Ho.
Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment.
J. Asian Ceram. Soc., 4 (2016), pp. 85-90
A.I. Adeogun, A.E. Ofudje, M.A. Idowu, S.O. Kareem.
Facile development of nano size calcium hydroxyapatite based ceramic from eggshells: synthesis and characterization.
Waste Biomass Valor., 9 (2018), pp. 1469-1473
U. Sabua, M. Rashad, G. Logesh, K. Kumar, M. Lodhe, M. Balasubramanian.
Development of biomorphic alumina using egg shell membrane as bio-template.
Ceram. Int., 44 (2018), pp. 4615-4621
H.R. Fernandes, F. Andreola, L. Barbieri, I. Lancellotti, M.J. Pascual, J.M.F. Ferreira.
The use of eggshells to produce Cathode Ray Tube (CRT) glass foams.
Ceram. Int., 39 (2013), pp. 9071-9078
S.S. Hossain, P.K. Roy.
Study of physical and dielectric properties of bio-waste derived synthetic wollastonite.
J. Asian Ceram. Soc., 6 (2018), pp. 289-298
ASTM C133.
Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories.
ASTM International, (2015),
R. Liu, T. Xue, J. Song, Y. Wang, T. Qi, J. Qu, A. Du.
Removal of silicon in acid leaching and flocculation processes during zirconium oxychloride octahydrate production.
Ceram. Int., 40 (2014), pp. 8801-8808
A. More, A. Tarade, A. Anant.
Assessment of suitability of fly ash and rice husk ash burnt clay bricks.
Int. J. Sci. Res. Publ., l4 (2014), pp. 1-6
C.C. Chen, M.H. Lai, W.C. Wang, S.J. Ding.
Properties of anti-washout-type calcium silicate bone cements containing gelatin.
J. Mater. Sci. Mater. Med., 21 (2010), pp. 1057-1068
J.J. Beaudoin, H. Dramé, L. Raki, R. Alizadeh.
Formation and characterization of calcium silicate hydrate–hexadecyltrimethylammonium nanostructure.
J. Mater. Res., 23 (2008), pp. 2804-2815
C. Paluszkiewicz, M. Blażewicz, J. Podporska, T. Gumuła.
Nucleation of hydroxyapatite layer on wollastonite material surface: FTIR studies.
Vib. Spectrosc., 48 (2008), pp. 263-268
J. Glucklich, U. Korin.
Effect of moisture content on strength and strain energy release rate of cement mortar.
J. Am. Ceram. Soc., 58 (1975), pp. 517-521
N. Sathiparan, U. Rumeshkumar.
Effect of moisture condition on mechanical behavior of low strength brick masonry.
J. Build. Eng., 17 (2018), pp. 23-31
M.R.F. Goncalves, C.P. Bergmann.
Thermal insulators made with rice husk ashes: production and correlation between properties and microstructure.
Constr. Build. Mater., 21 (2007), pp. 2059-2065
Copyright © 2019. SECV
Article options
es en pt
Política de cookies Cookies policy Política de cookies
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here. Utilizamos cookies próprios e de terceiros para melhorar nossos serviços e mostrar publicidade relacionada às suas preferências, analisando seus hábitos de navegação. Se continuar a navegar, consideramos que aceita o seu uso. Você pode alterar a configuração ou obter mais informações aqui.