La calidad superficial es uno de los aspectos más cuidados en la fabricación de piezas. Esta calidad se estima frecuentemente en función a la rugosidad superficial. Trabajos que incorporan técnicas de softcomputing al estudio de la rugosidad superficial en-proceso o pos-proceso son relativamente frecuentes en la literatura. Sin embargo, son casi inexistentes los dedicados al estudio de la rugosidad superficial en pre-proceso, pese a que esto puede ayudar a reducir costes asociados al aseguramiento de la calidad superficial en la producción industrial. En este trabajo se presenta una técnica softcomputing para generar un modelo pre-proceso predictivo de la rugosidad superficial basado en experimentación con características diversas del proceso de fresado a alta velocidad. El modelo de predicción es un clasificador Bayesiano, validado con el método k-fold cross-validation y varios valores de mérito, lo que ha permitido verificar la calidad del modelo predictivo respecto a otros modelos basados en técnicas similares.
El factor de impacto mide la media del número de citaciones recibidas en un año por trabajos publicados en la publicación durante los dos años anteriores.
© Clarivate Analytics, Journal Citation Reports 2025
SJR es una prestigiosa métrica basada en la idea de que todas las citaciones no son iguales. SJR usa un algoritmo similar al page rank de Google; es una medida cuantitativa y cualitativa al impacto de una publicación.
Ver másSNIP permite comparar el impacto de revistas de diferentes campos temáticos, corrigiendo las diferencias en la probabilidad de ser citado que existe entre revistas de distintas materias.
Ver más
