La identificación de sistemas complejos y no-lineales ocupa un lugar importante en las arquitecturas de neurocontrol, como por ejemplo el control inverso, control adaptativo directo e indirecto, etc. Es habitual en esos enfoques utilizar redes neuronales “feedforward” con memoria en la entrada (Tapped Delay) o bien redes recurrentes (modelos de Elman o Jordan) entrenadas off-line para capturar la dinámica del sistema (directa o inversa) y utilizarla en el lazo de control. En este artículo presentamos un esquema de identificación basado en redes del tipo RBF (Radial Basis Function) que se entrena on-line y que dinámicamente modifica su estructura (número de nodos o elementos en la capa oculta) permitiendo una implementación en tiempo real del identificador en el lazo de control.
El factor de impacto mide la media del número de citaciones recibidas en un año por trabajos publicados en la publicación durante los dos años anteriores.
© Clarivate Analytics, Journal Citation Reports 2025
SJR es una prestigiosa métrica basada en la idea de que todas las citaciones no son iguales. SJR usa un algoritmo similar al page rank de Google; es una medida cuantitativa y cualitativa al impacto de una publicación.
Ver másSNIP permite comparar el impacto de revistas de diferentes campos temáticos, corrigiendo las diferencias en la probabilidad de ser citado que existe entre revistas de distintas materias.
Ver más
