Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable
Información de la revista
Vol. 13. Núm. 2.
Páginas 247-257 (Abril - Junio 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3452
Vol. 13. Núm. 2.
Páginas 247-257 (Abril - Junio 2016)
Open Access
Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable
Kinematic Analysis of a Novel Reconfigurable Parallel Robot
Visitas
3452
Róger E. Sánchez-Alonso
Autor para correspondencia
rogersan1984@hotmail.es

Autor para correspondencia.
, José-Joel González-Barbosa, Eduardo Castillo-Castañeda, Mario A. García-Murillo
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Cerro Blanco, N° 141, Colinas del Cimatario, Querétaro, QRO, México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Este trabajo presenta el análisis cinemático de un manipulador reconfigurable integrado por dos sub-manipuladores paralelos que comparten una plataforma móvil. Una solución en forma semi-cerrada para el análisis directo de posición del robot es obtenida tomando ventaja de la geometría no plana de la plataforma móvil, mientras que los análisis de velocidad, aceleración y singularidades son desarrollados por medio de teoría de tornillos. Finalmente se propone una aproximación basada en el índice de manipulabilidad de la matriz jacobiana para determinar la configuración geométrica que optimiza el desempeño del manipulador dada una determinada postura de la plataforma móvil.

Palabras clave:
Robot paralelo
Reconfiguración
Cinemática
Teoría de tornillos
Matriz jacobiana
Índice de manipulabilidad.
Abstract

This work presents the kinematic analysis of a reconfigurable manipulator composed of two parallel sub-manipulators that share a common moving platform. A semi-closed form solution is easily obtained to solve the forward displacement analysis of the robot taking advantage of the non-planar geometry of the moving platform, while the velocity, acceleration and singularity analyses are developed by resorting to screw theory. Finally a very practical approach based on the manipulability index of the jacobian matrix of the robot is proposed in order to determine the geometric configuration that optimizes the performance of the manipulator given a pose of the moving platform.

Keywords:
Parallel robot
Reconfiguration
Kinematics
Screw theory
Jacobian matrix
Manipulability index.
Referencias
[Angeles, 2007]
J. Angeles.
Fundamentals of Robotic Mechanical Systems, Theory, Methods and Algorithms.
Springer International Publishing, (2007),
[Balmaceda-Santamaría et al., 2014]
A. Balmaceda-Santamaría, E. Castillo-Castañeda, J. Gallardo-Alvarado, R. Sánchez-Alonso.
Una familia de manipuladores paralelos reconfigurables tipo Delta.
In XVI Congreso Mexicano de Robótica, México, (2014),
[Bande et al., 2005]
P. Bande, M. Seibt, E. Uhlmann, S. Saha, P. Rao.
Kinematics Analyses of Dodekapod.
Mechanism and Machine Theory, 40 (2005), pp. 740-756
[Brisan, 2007]
C. Brisan.
Designing Aspects of a Special Class of Reconfigurable Parallel Robots.
Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications,, pp. 101-106
[Bonev et al., 2003]
I. Bonev, D. Zlatanov, C. Gosselin.
Singularity analysis of 3-DOF planar parallel mechanisms via screw theory.
Journal of Mechanical Design, 125 (2003), pp. 573-581
[Carbonari et al., 2014]
L. Carbonari, M. Callegari, G. Palmieri, M.-C. Palpacelli.
A new class of reconfigurable parallel kinematic machines.
Mechanism and Machine Theory, 79 (2014), pp. 173-183
[Chen, Ch-T. 2012]
Ch-T. Chen.
Reconfiguration of a parallel kinematic manipulator for the maximum dynamic load-carrying capacity.
Mechanism and Machine Theory, 54 (2012), pp. 62-75
[Dasgupta and Mruthyunjaya, 1998]
B. Dasgupta, T.S. Mruthyunjaya.
Singularity-free path planning for the Stewart platform manipulator.
Mechanism and Machine Theory, 33 (1998), pp. 711-725
[du Plessis and Snyman, 2006]
L.J. du Plessis, J.A. Snyman.
An Optimally Re-Configurable Planar Gough-Stewart Machining Platform.
Mechanism and Machine Theory, 41 (2006), pp. 334-357
[Gallardo-Alvarado et al., 2006]
J. Gallardo-Alvarado, J.M. Rico, G. Alici.
Kinematics and singularity analyses of a 4-dof parallel manipulator using screw theory.
Mechanism and Machine Theory, 41 (2006), pp. 1048-1061
[Gallardo-Alvarado et al., 2008]
J. Gallardo-Alvarado, C.R. Aguilar-Nájera, L. Casique-Rosas, L. Pérez González, J. Rico-Martinez.
Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory.
Multibody System Dynamics, 20 (2008), pp. 307-325
[Gan et al., 2009]
D. Gan, Q. Liao, J. Dai, Sh. Wei, L.D. Seneviratne.
Forward displacement analysis of the general 6-6 Stewart mechanism using Gröbner bases.
Mechanism and Machine Theory, 44 (2009), pp. 1640-1647
[Gosselin and Angeles, 1990]
C. Gosselin, J. Angeles.
Singularity analysis of closed-loop kinematic chains.
IEEE Transactions on Robotics and Automation, 6 (1990), pp. 281-290
[Husty, 1996]
M. Husty.
An algorithm for solving the direct kinematic of Stewart-Gough type platforms.
Mechanism and Machine Theory, 31 (1996), pp. 365-379
[Ji and Song, 1998]
Z. Ji, P. Song.
Design of a Reconfigurable Platform Manipulator.
Journal of Field Robotics, 15 (1998), pp. 341-346
[Jiang and Gosselin, 2009]
Q. Jiang, C. Gosselin.
Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform.
Mechanism and Machine Theory, 44 (2009), pp. 1281-1293
[Kong, 2014]
X. Kong.
Reconfiguration analysis of a 3-DOF parallel mechanism using Euler parameter quaternions and algebraic geometry method.
Mechanism and Machine Theory, 74 (2014), pp. 188-201
[Kumar et al., 2009]
S. Kumar, T. Nagarajan, Y.G. Srinivasa.
Characterization of reconfigurable Stewart platform for contour generation.
Robotics and Computer-Integrated Manufacturing, 25 (2009), pp. 721-731
[Landeira Freire et al., 2015]
M. Landeira Freire, E. Sánchez, S. Tejada, R. Diez.
Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 12 (2015), pp. 80-91
[Lee and Shim, 2003]
T.-Y. Lee, J.-K. Shim.
Improved dialytic elimination algorithm for the forward kinematics of the general Stewart-Gough platform.
Mechanism and Machine Theory, 38 (2003), pp. 563-577
[Mayer and Gosselin, 2000]
B. Mayer, C. Gosselin.
Singularity Analysis and Representation of the General Gough-Stewart Platform.
The International Journal of Robotics Research, 19 (2000), pp. 271-288
[Merlet, 2004]
J.-P. Merlet.
Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis.
The International Journal of Robotics Research, 23 (2004), pp. 221-235
[Moreno et al., 2012]
H. Moreno, R. Saltaren, I. Carrera, L. Puglisi, R. Aracil.
Índices de Desempeño de Robots Manipuladores: Una Revisión del Estado del Arte.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 9 (2012), pp. 111-122
[Mu and Kazerounian, 2002]
Z. Mu, K. Kazerounian.
A real parameter continuation method for complete solution of forward position analysis of the general Stewart.
Journal of Mechanical Design, 124 (2002), pp. 236-244
[Omran et al., 2008]
A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem.
Genetic algorithm based optimal control for a 6-dof non redundant stewart manipulator.
International Journal of Mechanical Systems Science and Engineering, 2 (2008), pp. 73-79
[Parikh and Lam, 2005]
P.J. Parikh, S.S.Y. Lam.
A hybrid strategy to solve the forward kinematics problem in parallel manipulators.
IEEE Transactions on Robotics, 21 (2005), pp. 18-25
[Plitea et al., 2013]
N. Plitea, D. Lese, D. Pisla, C. Vaida.
Structural design and kinematics of a new parallel reconfigurable robot.
Robotics and Computer-Integrated Manufacturing, 29 (2013), pp. 219-235
[Raghavan, 1993]
M. Raghavan.
The Stewart platform of general geometry has 40 configurations.
Journal of Mechanical Design, 115 (1993), pp. 277-282
[Rico and Duffy, 2000]
J.M. Rico, J. Duffy.
Forward and inverse acceleration analyses of in-parallel manipulators.
Journal of Mechanical Design, 122 (2000), pp. 299-303
[Rolland, 2005]
L. Rolland.
Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator.
Advanced Robotics, 19 (2005), pp. 995-1025
[Rolland and Chandra, 2010]
L. Rolland, R. Chandra.
On Solving the Forward Kinematics of the 6-6 General Parallel Manipulator with an Efficient Evolutionary Algorithm.
pp. 117-124
[Sen et al., 2003]
S. Sen, B. Dasgupta, A. Mallik.
Variational approach for singularity-free path-planning of parallel manipulators.
Mechanism and Machine Theory, 38 (2003), pp. 1165-1183
[Shen and Wu, 2004]
H. Shen, X. Wu.
Numerical solution of direct kinematic problems for parallel manipulators based on interval dividing search algorithms.
Mechanical Science and Technology, (2004), pp. 23
[Simaan and Shoham, 2003]
N. Simaan, M. Shoham.
Stiffness Synthesis of a Variable Geometry Six-Degrees-of- Freedom Double Planar Parallel Robot.
The International Journal of Robotics Research, 22 (2003), pp. 757-775
[Sung-Gaun and Ryu, 2003]
K. Sung-Gaun, J. Ryu.
New dimensionally homogeneous jacobian matrix forrmulation by three end-effector points for optimal design of parallel manipulators.
IEEE Transactions on Robotics and Automation, 19 (2003), pp. 731-736
[Ueberle et al., 2004]
Ueberle, M., Mock, N., Buss, M., 2004. Vishard10, a novel hyper-redundant haptic interface, In 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 58-65. IEEE.
[Voglewede and Ebert-Uphoff, 2004]
P.A. Voglewede, I. Ebert-Uphoff.
Measuring “closeness” to singularities for parallel manipulators.
In IEEE International Conference on Robotics and Automation, 5 (2004), pp. 4539-4544
[Yu et al., 2012]
H. Yu, B. Li, Y. Wang, Y. Hu.
Conceptual design and workspace analysis of reconfigurable fixturing robots for sheet metal assembly.
Assembly Automation, 32 (2012), pp. 293-299
[Xi et al., 2011]
F. Xi, Y. Li, H. Wang.
Module-Based Method for Design and Analysis of Reconfigurable Parallel Robots.
Frontiers of Mechanical Engineering, 6 (2011), pp. 151-159
[Yang et al., 2001]
G. Yang, I.-M. Chen, W. Kiat, S. Huat.
Kinematic Design of Modular Reconfigurable in-Parallel Robots.
Autonomus Robots, 10 (2001), pp. 83-89
[Ye et al., 2014]
W. Ye, Y. Fang, K. Zhang, S. Guo.
A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain.
Mechanism and Machine Theory, 74 (2014), pp. 1-9
[Yurt et al., 2007]
S.N. Yurt, E. Anli, I. Ozkol.
Forward kinematics analysis of the 6-3 SPM by using neural networks.
Meccanica, 42 (2007), pp. 187-196
[Zhang and Shi, 2012]
Zhang, D., Shi, Q., 2012. Novel Design and Analysis of a Reconfigurable Parallel Manipulator Using Variable Geometry Approach. In Practical Applications of Intelligent Systems, edited by Yingling Wang and Tianrui Li, 124, 447-457. Advances in Intelligent and Soft Computing. Shanghai, China: Springer International Publishing.
Opciones de artículo
Herramientas