Buscar en
Revista Colombiana de Cardiología
Toda la web
Inicio Revista Colombiana de Cardiología Programación fetal de la hipertensión arterial del adulto: mecanismos celulare...
Información de la revista
Vol. 20. Núm. 1.
Páginas 23-32 (Enero - Febrero 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 20. Núm. 1.
Páginas 23-32 (Enero - Febrero 2013)
Open Access
Programación fetal de la hipertensión arterial del adulto: mecanismos celulares y moleculares
Fetal programming of adult arterial hypertension: cellular and molecular mechanisms
Visitas
2872
Robinson Ramírez1,2,
Autor para correspondencia
robin640@hotmail.com

Correspondencia.
1 Grupo de investigación en Ejercicio Físico y Deportes. Programas de Fisioterapia, Universidad Manuela Beltrán. Bogotá, Colombia
2 Facultad de Cultura Física, Deporte y Recreación, Universidad Santo Tomás, Bogotá, Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Cambios metabólicos in utero establecen patrones fisiológicos y estructurales a largo plazo que pueden “programar” la salud durante la vida adulta, teoría popularmente conocida como “hipótesis de Barker”. La programación fetal implica que durante los períodos críticos del crecimiento prenatal, ciertos cambios en el entorno hormonal y nutricional del embrión, pueden alterar la expresión del genoma fetal, en tejidos con funciones fisiológicas y metabólicas en la etapa adulta. La evidencia sugiere que patologías como enfermedad vascular (por ejemplo, hipertensión), síndrome metabólico y diabetes mellitus tipo 2, pueden “programarse” durante las primeras etapas del desarrollo fetal y manifestarse en etapas tardías, al interactuar con el estilo de vida y otros factores de riesgo adquiridos convencionales con el medio ambiente. El objetivo de esta revisión es presentar evidencia adicional que apoye la asociación entre el bajo peso al nacer, con el aumento en la prevalencia de la hipertensión arterial en la edad adulta. Se revisan la función endotelial, el estrés oxidativo, la resistencia a la insulina y la función mitocondrial, como posibles mecanismos celulares y moleculares.

Palabras clave:
programación fetal
enfermedad cardiovascular
hipertensión arterial
Keywords:
fetal programming
cardiovascular disease
hypertension

Metabolic changes in utero establish long-term physiological and structural patterns which can “program” health in adulthood, theory popularly known as “Barker hypothesis”. The fetal programming implies that during critical periods of prenatal growth, some changes in hormonal and nutritional environment of the embryo can alter fetal genome expression in tissues with physiological and metabolic functions in adulthood. Evidence suggests that pathologies like vascular disease (eg, hypertension), metabolic syndrome and type 2 diabetes mellitus, may “be programmed” during the early stages of fetal development and manifest in later stages, when interacting with lifestyle and other conventional acquired risk factors with the environment. The aim of this review is to present additional evidence to support the association between low birth weight with the increased prevalence of arterial hypertension in adulthood. We review endothelial function, oxidative stress, insulin resistance and mitochondrial function, as possible cellular and molecular mechanisms.

El Texto completo está disponible en PDF
Bibliografía
[1.]
L. Martínez de Villarreal.
Programación fetal de enfermedades expresadas en la etapa adulta.
Med Univer, 10 (2008), pp. 108-113
[2.]
D. Vieau.
Perinatal nutritional programming of health and metabolic adult disease.
World J Diabetes, 2 (2011), pp. 116-133
[3.]
J.G. Hall.
The importance of the fetal origin of adult disease for geneticists.
[4.]
F.H. Bloomfield.
Epigenetic modifications may play a role in the developmental consequences of early life events.
J Neurodev Disord, 3 (2011), pp. 348-355
[5.]
D.P.J. Barker.
Fetal programming: influences on development and disease in later life NIH Monograph Series.
Marcel Dekker, (2000),
[6.]
J.L. Baker, L.W. Olsen, T.I.A. Sorensen.
Childhood body-mass index and the risk of coronary heart disease in adulthood.
N Engl J Med, 357 (2007), pp. 2329-2333
[7.]
P. López-Jaramillo, J. López-López.
Fetal programming and cardiometabolic diseases: the role of angiotensin II and inflammation.
Clínica e Investigación en Arteriosclerosis, 22 (2010), pp. 37-40
[8.]
D.J.P. Barker, C. Osmond, P.D. Winter, B. Margetts, S.J. Simmonds.
Weight in infancy and death from ischaemic heart disease.
Lancet, 2 (1989), pp. 577-580
[9.]
B. Koletzko, P. Dodds, H. Akerblom, M. Ashwell.
Early nutrition and its later consequences: new opportunities Perinatal Programming of Adult Health - EC Supported Research.
Springer Science + Business Media Inc, (2005),
[10.]
P. López-Jaramillo.
Cardiometabolic diseases in Latin america: the role of fetal programming in response to maternal malnutrition.
Rev Esp Card, 62 (2009), pp. 670-676
[11.]
W.S. Cutfield, P.L. Hofman, M. Vickers, B. Breier, W.F. Blum, E.M. Robinson.
IGFs and binding proteins in short children with intrauterine growth retardation.
J Clin Endocrinol Metab, 87 (2002), pp. 235-239
[12.]
P.L. Hofman, W.S. Cutfield, E.M. Robinson.
Insulin resistance in short children with intrauterine growth retardation.
J Clin Endocrinol Metab, 82 (1997), pp. 402-406
[13.]
E. Oken, M.W. Gillman.
Fetal origins of obesity.
Obes Res, 11 (2003), pp. 496-506
[14.]
R.C. Whitaker.
Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy.
Pediatrics, 114 (2004), pp. e29-e36
[15.]
R. Ramírez-Vélez.
In utero fetal programming and its impact on health in adulthood.
Endocrinol Nutr, 59 (2012), pp. 383-393
[16.]
C.H. Fall, C.E. Stein, K. Kumaran, V. Cox, C. Osmond, D.J. Barker.
Size at birth, maternal weight, and type 2 diabetes in South India.
[17.]
C.E. Bertram, M.A. Hanson.
Animal models and programming of the metabolic syndrome.
Br Med Bull, 60 (2001), pp. 103-121
[18.]
M.D.C. Pinho Franco, D. Nigro.
Intrauterine undernutrition-renal and vascular origin of hypertension.
Cardiovascular Research, 60 (2003), pp. 228-234
[19.]
R. Ramírez-Vélez.
Postprandial lipemia induces endothelial dysfunction and higher insulin resistance in healthy subjects.
Endocrinol Nutr, 58 (2011), pp. 529-535
[20.]
P. López-Jaramillo, S.Y. Silva, N. Rodríguez Salamanca, A. Duran, W. Mosquera, V. Castillo.
Are Nutrition-induced epigenetic changes the link between socioeconomic pathology and cardiovascular diseases?.
American Journal of Therapeutics, 15 (2008), pp. 362-372
[21.]
P.H. Whincup, S.J. Kaye, C.G. Owen.
Birth weight and risk of type 2 diabetes: a systematic review.
JAMA, 300 (2008), pp. 2886-2897
[22.]
M.G. Keijzer-Veen, M.J. Finken, J. Nauta, F.W. Dekker, E.T. Hille, M. Frölich, Dutch POPS-19 Collaborative Study Group, et al.
Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth?. A prospective follow-up study in The Netherlands.
Pediatrics, 116 (2005), pp. 725-731
[23.]
N. Bergvall, A. Iliadou, T. Tuvemo, S. Cnattingius.
Birth characteristics and risk of high systolic blood pressure in early adulthood: socioeconomic factors and familial effects.
Epidemiology, 16 (2005), pp. 635-640
[24.]
S. Johansson, A. Iliadou, N. Bergvall, T. Tuvemo, M. Norman, S. Cnattingius.
Risk of high blood pressure among young men increases with the degree of immaturity at birth.
Circulation, 112 (2005), pp. 3430-3436
[25.]
Y.F. Cheung, K.Y. Wong, B.C. Lam, N.S. Tsoi.
Relation of arterial stiffness with gestational age and birth weight.
Arch Dis Child, 89 (2004), pp. 217-221
[26.]
I. Ligi, I. Grandvuillemin, V. Andres, F. Dignat-George, U. Simeoni.
Low birth weight infants and the developmental programming of hypertension: a focus on vascular factors.
Semin Perinatol, 34 (2010), pp. 188-192
[27.]
I. Ligi, S. Simoncini, E. Tellier.
A switch toward angiostatic gene expression impairs the angiogenic properties of endothelial progenitor cells in low birth weight preterm infants.
Blood, 118 (2011), pp. 1699-1709
[28.]
P. Mitchell, G. Liew, E. Rochtchina.
Evidence of arteriolar narrowing in low-birthweight children.
Circulation, 118 (2008), pp. 518-524
[29.]
A. Kistner, L. Jacobson, S.H. Jacobson, E. Svensson, A. Hellstrom.
Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women.
Pediatr Res, 51 (2002), pp. 675-680
[30.]
P. Pladys, F. Sennlaub, S. Brault.
Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low-protein diet in utero.
Am J Physiol Regul Integr Comp Physiol, 289 (2005), pp. R1580-R1588
[31.]
I. Bilge, S. Poyrazoglu, F. Bas, S. Emre, A. Sirin, S. Gokalp, et al.
Ambulatory blood pressure monitoring and renal functions in term small-for-gestational age children.
Pediatr Nephrol, 26 (2011), pp. 119-126
[32.]
M.G. Keijzer-Veen, A. Dülger, F.W. Dekker, J. Nauta, B.J. van der Heijden.
Very preterm birth is a risk factor for increased systolic blood pressure at a young adult age.
Pediatr Nephrol, 25 (2010), pp. 509-516
[33.]
P.F. Mount, D.A. Power.
Nitric oxide in the kidney: functions and regulation of synthesis.
Acta Physiol, 187 (2006), pp. 433-446
[34.]
M.F. Cavanal, G.N. Gomes, A.L. Forti, S.O. Rocha, M.C. Franco, Z.B. Fortes, et al.
The influence of L-arginine on blood pressure, vascular nitric oxide and renal morphometry in the offspring from diabetic mothers.
Pediatr Res, 62 (2007), pp. 145-150
[35.]
P. Li, M.C. Chappell, C.M. Ferrario, K.B. Brosnihan.
Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide.
Hypertension, 29 (1997), pp. 394-400
[36.]
P. López-Jaramillo, L.P. Pradilla, V. Castillo, V. Lahera.
Socioeconomical pathology as determinant of regional differences in the prevalence of metabolic syndrome and pregnancy-induced hypertension.
Rev Esp Card, 60 (2007), pp. 168-178
[37.]
P. Lopez-Jaramillo.
Defining the research priorities to fight the burden of cardiovascular diseases in Latin America.
Journal of Hypertension, 26 (2008), pp. 1886-1889
[38.]
L. Frank, I.R. Sosenko.
Prenatal development of lung antioxidant enzymes in four species.
J Pediatr, 110 (1987), pp. 106-110
[39.]
J.W. Lee, J.M. Davis.
Future applications of antioxidants in premature infants.
Curr Opin Pediatr, 23 (2011), pp. 161-166
[40.]
J.L. Kibler, K. Joshi, M. Ma.
Hypertension in relation to posttraumatic stress disorder and depression in the US National Comorbidity Survey.
Behav Med, 34 (2009), pp. 125-132
[41.]
J. Dy, H. Guan, R. Sampath-Kumar, B.S. Richardson, K. Yang.
Placental 11betahydroxysteroid dehydrogenase type 2 is reduced in pregnancies complicated with idiopathic intrauterine growth Restriction: evidence that this is associated with an attenuated ratio of cortisone to cortisol in the umbilical artery.
[42.]
L.A. Welberg, J.R. Seckl, M.C. Holmes.
Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring.
Eur J Neurosci, 12 (2000), pp. 1047-1054
[43.]
R.D. Roghair, J.L. Segar, K.A. Volk, M.W. Chapleau, L.M. Dallas, A.R. Sorenson, T.D. Scholz, F.S. Lamb.
Vascular nitric oxide and superoxide anion contribute to sex-specific programmed cardiovascular physiology in mice.
Am J Physiol Regul Integr Comp Physiol, 296 (2009), pp. R651-R662
[44.]
T. Iuchi, M. Akaike, T. Mitsui, Y. Ohshima, Y. Shintani, H. Azuma, T. Matsumoto.
Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction.
Circ Res, 92 (2003), pp. 81-87
[45.]
G. Cambonie, B. Comte, C. Yzydorczyk, T. Ntimbane, N. Germain, N.L. Lê, P. Pladys, C. Gauthier, I. Lahaie, D. Abran, J.C. Lavoie, A.M. Nuyt.
Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet.
Am J Physiol Regul Integr Comp Physiol, 292 (2007), pp. R1236-R1245
[46.]
C. Franco Mdo, A.P. Dantas, E.H. Akamine, E.M. Kawamoto, Z.B. Fortes, C. Scavone, R.C. Tostes, M.H. Carvalho, D. Nigro.
Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero.
J Cardiovasc Pharmacol, 40 (2002), pp. 501-509
[47.]
Y. Zhang, N. Fisher, S.E. Newey, et al.
The impact of proliferative potential of umbilical cord-derived endothelial progenitor cells and hypoxia on vascular tubule formation in vitro.
Stem Cells Dev, 18 (2009), pp. 359-375
[48.]
V.W. van Hinsbergh, P. Koolwijk.
Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead.
Cardiovasc Res, 78 (2008), pp. 203-212
[49.]
R.M. Beaty, J.B. Edwards, K. Boon, I.M. Siu, J.E. Conway, G.J. Riggins.
PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium.
J Neurooncol, 81 (2007), pp. 241-248
[50.]
E.C. Keeley, B. Mehrad, R.M. Strieter.
Chemokines as mediators of neovascularization.
Arterioscler Thromb Vasc Biol, 28 (2008), pp. 1928-1936
[51.]
P. López-Jaramillo, V. Lahera, J. López-López.
Epidemic of cardiometabolic diseases: A Latin American point of view.
Ther Adv Card Dis, 5 (2011), pp. 119-131
[52.]
D.A. Ingram, I.Z. Lien, L.E. Mead, et al.
In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function.
Diabetes, 57 (2008), pp. 724-731
[53.]
A.S. Roman, A. Rebarber, N.S. Fox, C.K. Klauser, N. Istwan, D. Rhea, D. Saltzman.
The effect of maternal obesity on pregnancy outcomes in women with gestational diabetes.
J Matern Fetal Neonatal Med, 24 (2011), pp. 723-727
[54.]
M.A. Tsadok, Y. Friedlander, O. Paltiel, O. Manor, V. Meiner, H. Hochner, et al.
Obesity and blood pressure in 17-year-old offspring of mothers with gestational diabetes: insights from the Jerusalem Perinatal Study.
Exp Diabetes Res, 2011 (2011), pp. 906154
[55.]
G.N. Gomes, F.Z. Gil.
Prenatally programmed hypertension: role of maternal diabetes.
Braz J Med Biol Res, 44 (2011), pp. 899-904
[56.]
V. Balasubramaniam, C.F. Mervis, A.M. Maxey, N.E. Markham, S.H. Abman.
Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia.
Am J Physiol Lung Cell Mol Physiol, 292 (2007), pp. L1073-L1084
[57.]
T.J. Roseboom, J.H. van der Meulen, C. Osmond, D.J. Barker, A.C. Ravelli, J.M. Schroeder- Tanka, et al.
Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45.
Heart, 84 (2000), pp. 595-598
[58.]
L. Aerts, F.A. Van Assche.
Intra-uterine transmission of disease.
Placenta, 24 (2003), pp. 905-911
[59.]
D.J. Barker, S.P. Bagby, M.A. Hanson.
Mechanisms of disease: in utero programming in the pathogenesis of hypertension.
Nat Clin Pract Nephrol, 2 (2006), pp. 700-707
[60.]
K. Amri, N. Freund, J. Vilar, C. Merlet-Benichou, M. Lelievre-Pegorier.
Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies.
Diabetes, 48 (1999), pp. 2240-2245
[61.]
S.O. Rocha, G.N. Gomes, A.L. Forti, F.M. do Carmo Pinho, Z.B. Fortes, C.M. de Fatima, et al.
Long-term effects of maternal diabetes on vascular reactivity and renal function in rat male offspring.
Pediatr Res, 58 (2005), pp. 1274-1279
[62.]
A. Magaton, F.Z. Gil, D.E. Casarini, M.F. Cavanal, G.N. Gomes.
Maternal diabetes mellitus - early consequences for the offspring.
Pediatr Nephrol, 22 (2007), pp. 37-43
[63.]
S. Tran, Y.W. Chen, I. Chenier, J.S. Chan, S. Quaggin, M.J. Hebert, et al.
Maternal diabetes modulates renal morphogenesis in offspring.
J Am Soc Nephrol, 19 (2008), pp. 943-952
[64.]
L.A. Ortiz, A. Quan, F. Zarzar, A. Weinberg, M. Baum.
Prenatal dexamethasone programs hypertension and renal injury in the rat.
Hypertension, 41 (2003), pp. 328-334
[65.]
D. Dabelea.
The predisposition to obesity and diabetes in offspring of diabetic mothers.
Diabetes Care, 30 (2007), pp. S169-S174
[66.]
U. Simeoni, D.J. Barker.
Offspring of diabetic pregnancy: long-term outcomes.
Semin Fetal Neonatal Med, 14 (2009), pp. 119-124
[67.]
B.L. Silverman, B.E. Metzger, N.H. Cho, C.A. Loeb.
Impaired glucose tolerance in adolescent offspring of diabetic mothers Relationship to fetal hyperinsulinism.
Diabetes Care, 18 (1995), pp. 611-617
[68.]
D.J. Pettitt, P.H. Bennett, M.F. Saad, M.A. Charles, R.G. Nelson, W.C. Knowler.
Abnormal glucose tolerance during pregnancy in Pima Indian women Long-term effects on offspring.
Diabetes, 40 (1991), pp. 126-130
[69.]
P. Tapanainen, E. Leinonen, A. Ruokonen, M. Knip.
Leptin concentrations are elevated in newborn infants of diabetic mothers.
Horm Res, 55 (2001), pp. 185-190
[70.]
J.G. Manderson, C.C. Patterson, D.R. Hadden, A.I. Traub, H. Leslie, D.R. McCance.
Leptin concentrations in maternal serum and cord blood in diabetic and nondiabetic pregnancy.
Am J Obstet Gynecol, 188 (2003), pp. 1326-1332
[71.]
A. Plagemann.
‘Fetal programming’ and ‘functional teratogenesis’: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks.
J Perinat Med, 32 (2004), pp. 297-305
[72.]
K. Franke, T. Harder, L. Aerts, K. Melchior, S. Fahrenkrog, E. Rodekamp, et al.
“Programming” of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats.
Brain Res, 1031 (2005), pp. 276-283
[73.]
A.R. Saltiel, C.R. Kahn.
Insulin signalling and the regulation of glucose and lipid metabolism.
Nature, 414 (2001), pp. 799-806
[74.]
J.E. Pessin, A.R. Saltiel.
Signaling pathways in insulin action: molecular targets of insulin resistance.
J Clin Invest, 106 (2000), pp. 165-169
[75.]
R.A. Peliciari-Garcia, A.C. Marcal, J.A. Silva, D. Carmo-Buonfiglio, F.G. Amaral, S.C. Afeche, et al.
Insulin temporal sensitivity and its signaling pathway in the rat pineal gland.
Life Sci, 87 (2010), pp. 169-174
[76.]
L.A. Velloso, F. Folli, L. Perego, M.J. Saad.
The multi-faceted cross-talk between the insulin and angiotensin II signaling systems.
Diabetes Metab Res Rev, 22 (2006), pp. 98-107
[77.]
F. Folli, C.R. Kahn, H. Hansen, J.L. Bouchie, E.P. Feener, I.I. Angiotensin.
inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk.
J Clin Invest, 100 (1997), pp. 2158-2169
[78.]
D. Skultetyova, S. Filipova, I. Riecansky, J. Skultety.
The role of angiotensin type 1 receptor in inflammation and endothelial dysfunction.
Recent Pat Cardiovasc Drug Discov, 2 (2007), pp. 23-27
[79.]
M.S. Zhou, I.H. Schulman, L. Raij.
Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation.
J Hypertens, 28 (2010), pp. 527-535
[80.]
L. Rocco, F.Z. Gil, T.M. da Fonseca Pletiskaitz, M. de Fátima Cavanal, G.N. Gomes.
Effect of sodium overload on renal function of offspring from diabetic mothers.
Pediatr Nephrol, 23 (2008), pp. 2053-2060
[81.]
T. Nehiri, J.P. Duong Van Huyen, M. Viltard, C. Fassot, D. Heudes, N. Freund, et al.
Exposure to maternal diabetes induces salt-sensitive hypertension and impairs renal function in adult rat offspring.
Diabetes, 57 (2008), pp. 2167-2175
[82.]
Q. Wang, A.I. Frolova, S. Purcell, K. Adastra, E. Schoeller, M.M. Chi, et al.
Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice.
PLoS One, 28 (2010), pp. e15901
[83.]
S.L. Wakefield, M. Lane, M. Mitchell.
Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse.
Biol Reprod, 84 (2011), pp. 572-580
[84.]
D.X. Zhang, D.D. Gutterman.
Mitochondrial reactive oxygen species-mediated signaling in endothelial cells.
Am J Physiol Heart Circ Physiol, 292 (2007), pp. H2023-H2031
[85.]
W.R. Treem, R.J. Sokol.
Disorders of the mitochondria.
Semin Liver Dis, 18 (1998), pp. 237-253
[86.]
M.D. Brown, I.A. Trounce, A.S. Jun, J.C. Allen, D.C. Wallace.
Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber's hereditary optic neuropathy mitochondrial DNA mutation.
J Biol Chem, 275 (2000), pp. 39831-39836
[87.]
J.P. Sheehan, R.H. Swerdlow, W.D. Parker, S.W. Miller, R.E. Davis, J.B. Tuttle.
Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson's disease.
J Neurochem, 68 (1997), pp. 1221-1233
[88.]
K. Pong, S.R. Doctrow, K. Huffman, AdinolfiF C.A., M. Baudry.
Attenuation of staurosporineinduced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons.
Exp Neurol, 171 (2001), pp. 84-97
[89.]
Y. Rong, S.R. Doctrow, G. Tocco, M. Baudry.
EUK134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainateinduced neuropathology.
Proc Natl Acad Sci USA, 96 (1999), pp. 9897-9902
[90.]
D. Lattuada, F. Colleoni, A. Martinelli, A. Garretto, R. Magni, T. Radaelli, I. Cetin.
Higher mitochondrial DNA content in human IUGR placenta.
Placenta, 29 (2008), pp. 1029-1033
[91.]
D.M. Carty, C. Delles, A.F. Dominiczak.
Novel biomarkers for predicting preeclampsia.
Trends Cardiovasc Med, 18 (2008), pp. 186-194
[92.]
T.H. Hung, G.J. Burton.
Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia.
Taiwan J Obstet Gynecol, 45 (2006), pp. 189-200
[93.]
Y. Wang, S.W. Walsh.
Placental mitochondria as a source of oxidative stress in pre-eclampsia.
Placenta, 19 (1998), pp. 581-586
[94.]
F. Ali, N.S. Ali, A. Bauer, J.J. Boyle, S.S. Hamdulay, D.O. Haskard, A.M. Randi, J.C. Mason.
PPARdelta and PGC1alpha act cooperatively to induce haem oxygenase-1 and enhance vascular endothelial cell resistance to stress.
Cardiovasc Res, 85 (2010), pp. 701-710
[95.]
R. Barrès, M.E. Osler, J. Yan, A. Rune, T. Fritz, K. Caidahl, A. Krook, J.R. Zierath.
Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density.
Cell Metab, 10 (2009), pp. 189-198
[96.]
Aguilar, J.C. Mateus, R. Ramírez-Vélez, M. Mosquera, I. Echeverry, J.G. Ortega, M. Romero.
Potencial efecto del ejercicio físico y del consumo de micronutrientes durante la gestación en factores maternos y placentarios asociados a Enfermedades Crónicas No transmisibles (ECNT) del adulto.
Colom Med, 4 (2009), pp. 425-436
[97.]
R. Ramírez-Vélez, A.C. Aguilar de Plata, M.M. Escudero, I. Echeverry, J.G. Ortega, B. Salazar, et al.
Influence of regular aerobic exercise on endothelium-dependent vasodilation and cardiorespiratory fitness in pregnant women.
J Obstet Gynaecol Res, 37 (2011), pp. 1601-1608
[98.]
R. Ramírez-Vélez, M. Romero, I. Echeverri, J.G. Ortega, M. Mosquera, B. Salazar, et al.
A factorial randomized controlled trial to evaluate the effect of micronutrients supplementation and regular aerobic exercise on maternal endotheliumdependent vasodilatation and oxidative stress of the newborn.
Trials, 28 (2011), pp. 60
[99.]
R. Ramírez-Vélez, A.C. Aguilar, M. Mosquera, R.G. García, L.M. Reyes, P. López-Jaramillo.
Clinical trial to assess the effect of physical exercise on endothelial function and insulin resistance in pregnant women.
Trials, 17 (2009), pp. 104
[100.]
J.M. Moreno-Villares, M.J. Galiano.
La programación metabólica: cómo influye la alimentación en el período de lactante en el desarrollo de la enfermedad cardiovascular del adulto de Segovia.
Nutr Clin Med, 3 (2009), pp. 109-121
Copyright © 2013. Sociedad Colombiana de Cardiología y Cirugía Cardiovascular
Opciones de artículo
Herramientas
Quizás le interese:
10.1016/j.rccar.2019.11.005
No mostrar más