Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Factores de riesgo cardiovascular dependientes de la infección por VIH
Información de la revista
Vol. 27. Núm. S1.
Enfermedad cardiovascular e infección por VIH
Páginas 17-23 (Septiembre 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 27. Núm. S1.
Enfermedad cardiovascular e infección por VIH
Páginas 17-23 (Septiembre 2009)
Acceso a texto completo
Factores de riesgo cardiovascular dependientes de la infección por VIH
HIV-related cardiovascular risk factors
Visitas
3254
Mar Masiá, Félix Gutiérrez
Autor para correspondencia
Unidad de Enfermedades Infecciosas, Hospital General Universitario de Elche, Alicante, España
Este artículo ha recibido
Información del artículo
Resumen

Diversas evidencias procedentes de estudios experimentales y observacionales sugieren que la infección por el virus de la inmunodeficiencia humana (VIH) per se y el estado proinfl amatorio asociado pueden aumentar el riesgo de enfermedad cardiovascular. La infección por VIH puede activar diversas vías infl amatorias de la pared vascular con liberación de citocinas y expresión de moléculas de adhesión endotelial. El tratamiento antirretroviral de gran actividad (TARGA) es capaz de suprimir muchas de estas alteraciones. El papel del VIH en el riesgo cardiovascular se ha puesto de manifiesto en los estudios de interrupción de tratamiento, fundamentalmente en el estudio SMART, en el que se demostró una mayor mortalidad cardiovascular en el grupo que interrumpía el TARGA. El cambio brusco a un estado más proinfl amatorio producido por la reanudación repentina de la replicación viral podría inducir un aumento de la adhesión plaquetaria y la migración de células infl amatorias con inestabilización de la placa. Algunos estudios sugieren que el VIH puede producir también daño endotelial y se ha descrito un descenso de los marcadores de activación endotelial y una mejoría de la función endotelial tras el inicio del TARGA, que se ha correlacionado con el descenso de la carga viral del VIH. Finalmente, el VIH podría inducir enfermedad cardiovascular a través de su efecto sobre el colesterol unido a lipoproteínas de alta densidad que puede descender en pacientes con infección no controlada. Aunque la relación del VHC con el riesgo cardiovascular es controvertida, la coinfección por el VHC se ha asociado con una mayor frecuencia de resistencia insulínica y de infarto agudo de miocardio en algunas cohortes.

Palabras clave:
VIH
Arteriosclerosis
Riesgo cardiovascular
Episodios cardiovasculares
Virus de la hepatitis C
Enfermedad cardiovascular
Abstract

Evidence from experimental and observational studies suggests that HIV infection per se and the associated proinfl ammatory state can increase the risk of cardiovascular disease. HIV infection can activate several infl ammatory pathways in the vascular wall with cytokine release and expression of endothelial adhesion molecules. Many of these alterations can be suppressed by highly-active antiretroviral therapy (HAART). The role of HIV in cardiovascular risk has been demonstrated in studies of treatment interruption, mainly in the SMART trial, in which greater cardiovascular mortality was observed in the group interrupting HAART. The abrupt change to a more proinfl ammatory state produced by sudden resumption of viral replication could induce an increase in platelet adhesion and migration of infl ammatory cells with plaque instability. Some studies suggest that HIV can also produce endothelial damage; a decrease in markers of endothelial activation and improvement of endothelial function after initiation of HAART have been described, and these changes have been correlated with the decrease in HIV viral load. Finally, HIV can induce cardiovascular disease through its effect on high-density lipoprotein cholesterol, which can decrease in patients with uncontrolled infection. Although the association of HIV with cardiovascular risk is controversial, coinfection with hepatitis C infection has been associated with a higher frequency of insulin resistance and acute myocardial infarction in some cohorts.

Keywords:
HIV
Arteriosclerosis
Cardiovascular risk
Cardiovascular events
Hepatitis C virus
Cardiovascular disease
El Texto completo está disponible en PDF
Bibliografía
[1.]
N. Friis-Moller, P. Reiss, C.A. Sabin, et al.
Class of antiretroviral drugs and the risk of myocardial infarction.
N Engl J Med, 356 (2007), pp. 1723-1735
[2.]
A. Calmy, A. Gayet-Ageron, F. Montecucco, A. Nguyen, F. Mach, F. Burger, STACCATO Study Group, et al.
AIDS HIV increases markers o f cardiovascular risk: results from a randomized, treatment interruption trial.
AIDS, 23 (2009), pp. 929-939
[3.]
A.C. Ross, R. Armentrout, M.A. O’Riordan, N. Storer, N. Rizk, D. Harrill, et al.
Endothelial activation markers are linked to HIV status and are independent of antiretroviral therapy and lipoatrophy.
J Acquir Immune Defic Syndr, 49 (2008), pp. 499-506
[4.]
W.M. El-Sadr, J.D. Lundgren, J.D. Neaton, F. Gordin, D. Abrams, R.C. Arduino, et al.
CD4+ count-guided interruption of antiretroviral treatment.
N Engl J Med, 355 (2006), pp. 2283-2296
[5.]
E. Martínez, M. Larrouse, J.M. Gatell.
Cardiovascular disease and HIV infection: host, virus or drugs?.
Curr Opin Infect Dis, 22 (2009), pp. 28-34
[6.]
L.H. Kuller, R. Tracy, W. Belloso, S. De Wit, F. Drummond, H.C. Lane, INSIGHT SMART Study Group, et al.
Infl ammatory and coagulation biomarkers and mortality in patients with HIV infection.
[7.]
P. Libby.
Infl ammation in atherosclerosis.
Nature, 420 (2002), pp. 868-874
[8.]
P. Libby, D. Egan, S. Skarlatos.
Roles of infectious agents in atherosclerosis and restenosis: an assessment of the evidence and need for future research.
Circulation, 96 (1997), pp. 4095-4103
[9.]
J. Danesh, R. Collins, R. Peto.
Chronic infections and coronary heart disease: is there a link?.
[10.]
S.D. Fisher, T.L. Miller, S.E. Lipshultz.
Impact of HIV and highly active antiretroviral therapy on leukocyte adhesion molecules, arterial infl ammation, dyslipidemia, and atherosclerosis.
[11.]
G.F. De Larrañaga, A. Petroni, G. Deluchi, B.S. Alonso, J.A. Benetucci.
Viral load and disease progression as responsible for endothelial activation and/or injury in human immunodeficiency virus-1- infected patients.
Blood Coagul Fibrinolysis, 14 (2003), pp. 15-18
[12.]
K. Wolf, D.A. Tsakiris, R. Weber, P. Erb, M. Battegay.
Antiretroviral therapy reduces markers of endothelial and coagulation activation in patients infected with human immunodeficiency virus type 1.
J Infect Dis, 185 (2002), pp. 456-462
[13.]
L. Buonaguro, G. Barillari, H.K. Chang, C.A. Bohan, V. Kao, R. Morgan, et al.
Effects of the human immunodeficiency virus type 1 tat protein on the expression of infl ammatory cytokines.
J Virol, 66 (1992), pp. 7159-7167
[14.]
G. Scala, M.R. Ruocco, C. Ambrosino, M. Mallardo, V. Giordano, F. Baldassarre, et al.
The expression of the interleukin 6 gene is induced by the human immunodeficiency virus1 TAT protein.
J Exp Med, 179 (1994), pp. 961-971
[15.]
S. Swingler, A. Mann, J. Jacque, B. Brichacek, V.G. Sasseville, K. Williams, et al.
HIV Nef mediates lymphocyte chemotaxis and activation by infected macrophages.
Nat Med, 5 (1999), pp. 997-1003
[16.]
E. Olivetta, Z. Percario, G. Fiorucci, G. Mattia, I. Schiavoni, C. Dennis, et al.
HIV-1 Nef induces the release of infl ammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation.
J Immunol, 170 (2003), pp. 1716-1727
[17.]
Y. Takano, K. Shimokado, Y. Hata, M. Yoshida.
HIV envelope protein gp120-triggeredCD4? T-cell adhesion to vascular endothelium is regulated via CD4 and CXCR4 receptors.
Biochim Biophys Acta, 1772 (2007), pp. 549-555
[18.]
Olmo M, Alonso-Villaverde C, Peñaranda M, Gutiérrez F, Romeu J, Larrousse M, et al, and STOPAR Study Team. Effect of HAART Interruption on Plasma Infl ammatory Markers Associated with Cardiovascular Disease. 24-Month Results from a Randomized Study. 16th Conference on Retrovirus and Opportunistic Infections. Montreal; 2009. Abstract 738.
[19.]
P.M. Ridker, N.J. Brown, D.E. Vaughan, D.G. Harrison, J.L. Mehta.
Established and emerging plasma biomarkers in the prediction of first atherothrombotic events.
Circulation, 109 (2004), pp. IV6-19
[20.]
M. Masiá, E. Bernal, S. Padilla, M.L. Graells, I. Jarrín, M.V. Almenar, et al.
The role of Creactive protein as a marker for cardiovascular risk associated with antiretroviral therapy in HIV-infected patients.
Atherosclerosis, 195 (2007), pp. 167-171
[21.]
M.M. Guimarães, D.B. Greco, S.M. Figueiredo, R.B. Fóscolo, A.R. Oliveira Jr, L.J. Machado.
High-sensitivity C-reactive protein levels in HIV-infected patients treated or not with antiretroviral drugs and their correlation with factors related to cardiovascular risk and HIV infection.
Atherosclerosis, 201 (2008), pp. 434-439
[22.]
V.A. Triant, J.B. Meigs, S.K. Grinspoon.
Association of C-Reactive Protein and HIV Infection With Acute Myocardial Infarction.
J Acquir Immune Defic Syndr, 51 (2009), pp. 268-273
[23.]
R. Ross.
The pathogenesis of atherosclerosis: a perspective for the 1990s.
Nature, 362 (1993), pp. 801-809
[24.]
H. Mu, H. Chai, P.H. Lin, Q. Yao, C. Chen.
Current update on HIV-associated vascular disease and endothelial dysfunction.
World J Surg, 31 (2007), pp. 632-643
[25.]
E.A. Eugenin, S. Morgello, M.E. Klotman, A. Mosoian, P.A. Lento, J.W. Berman, et al.
Human immunodeficiency virus (HIV) infects human arterial smooth muscle cells in vivo and in vitro: implications for the pathogenesis of HIV-mediated vascular disease.
Am J Pathol, 172 (2008), pp. 1100-1111
[26.]
T. Oshima, S.C. Flores, G. Vaitaitis, L. Coe, T. Joh, J.H. Park, et al.
HIV-1 Tat protein increases endothelial solute permeability through tyrosine kinase and mitogenactivated protein kinase-dependent pathways.
AIDS, 14 (2000), pp. 475-482
[27.]
H. Jia, M. Lohr, S. Jezequel, D. Davis, S. Shaikh, D. Selwood, et al.
Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis.
Biochem Biophys Res Commun, 284 (2001), pp. 469-479
[28.]
M.B. Huang, M. Khan, M. García-Barrio, M. Powell, V.C. Bond.
Apoptotic effects in primary human umbilical vein endothelial cell culture caused by exposure to virionassociated and cell-membrane-associated HIV-1 gp120.
J Acquir Immune Defic Syndr, 27 (2001), pp. 213-221
[29.]
M. Fiala, T. Murphy, J. MacDougall, W. Yang, A. Luque, L. Iruela-Arispe, et al.
HAART drugs induce mitochondrial damage and intercellular gaps and gp120 causes apoptosis.
Cardiovasc Toxicol, 4 (2004), pp. 327-337
[30.]
M.O. Westendorp, V.A. Shatrov, K. Schulze-Osthoff, R. Frank, M. Kraft, M. Los, et al.
HIV-1 Tat potentiates TNFα-induced NF-κB activation and cytotoxicity by altering the cellular redox state.
Embo J, 14 (1995), pp. 546-554
[31.]
S. Dhawan, R.K. Puri, A. Kumar, H. Duplan, J.M. Masson, B.B. Aggarwal.
Human immunodeficiency virus-1 tat protein induces the cell surface expression of endothelial leucocyte adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells.
Blood, 90 (1997), pp. 1535-1544
[32.]
Z. Ren, Q. Yao, C. Chen.
HIV-1 envelop glycoprotein 120 increases intercellular adhesion molecule-1 expression by human endothelial cells.
Lab Invest, 82 (2002), pp. 245-255
[33.]
S.K. Gupta, R.M. Johnson, C. Saha, K.J. Mather, M.L. Greenwald, J.S. Waltz, et al.
Improvement in HIV-related endothelial dysfunction using the anti-infl ammatory agent salsalate: a pilot study.
AIDS, 12 (2008), pp. 653-655
[34.]
J.T. Kuvin, A.R. Patel, K.A. Sliney, N.G. Pandian, W.M. Rand, J.E. Udelson, et al.
Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease.
J Am Coll Cardiol, 38 (2001), pp. 1843-1849
[35.]
D. Francisci, S. Giannini, F. Baldelli, M. Leone, B. Belfiori, G. Guglielmini, et al.
HIV type 1 infection, and not short-term HAART, induces endothelial dysfunction.
AIDS, (2009),
[36.]
U.S. Kristoffersen, K. Kofoed, G. Kronborg, A.K. Giger, A. Kjaer, A.M. Lebech.
Reduction in circulating markers of endothelial dysfunction in HIV-infected patients during antiretroviral therapy.
[37.]
M.G. Van Vonderen, E.A. Hassink, M.A. Van Agtmael, C.D. Stehouwer, S.A. Danner, P. Reiss, et al.
Increase in carotid artery intima-media thickness and arterial stiffness but improvement in several markers of endothelial function after initiation of antiretroviral therapy.
J Infect Dis, 199 (2009), pp. 1186-1194
[38.]
F.J. Torriani, L. Komarow, R.A. Parker, B.R. Cotter, J.S. Currier, M.P. Dubé, ACTG 5152s Study Team, et al.
Endothelial function in human immunodeficiency virus-infected antiretroviral-naive subjects before and after starting potent antiretroviral therapy: The ACTG (AIDS Clinical Trials Group) Study 5152s.
J Am Coll Cardiol, 52 (2008), pp. 569-576
[39.]
A. Blum, V. Hadas, M. Burke, I. Yust, A. Kessler.
Viral load of the immunodeficiency virus could be an independent risk factor for endothelial dysfunction.
Clin Cardiol, 28 (2005), pp. 149-153
[40.]
E. Papasavvas, L. Azzoni, M. Pistilli, A. Hancock, G. Reynolds, C. Gallo, et al.
Increased soluble vascular adhesión molecule-1 plasma levels and soluble intercellular adhesion molecule-1 during antiretroviral therapy interruption and retention of elevated soluble vascular cellular adhesion molecule-1 levels following resumption of antiretroviral therapy.
[41.]
P. Aukrust, L. Luna, T. Ueland, R.F. Johansen, F. Müller, S.S. Froland, et al.
Impaired base excision repair and accumulation of oxidative base lesions in CD4+ T cells of HIVinfected patients.
Blood, 105 (2005), pp. 4730-4735
[42.]
T. Hulgan, J. Morrow, R.T. D’Aquila, S. Raffanti, M. Morgan, P. Rebeiro, et al.
Oxidant stress is increased during treatment of human immunodeficiency virus infection.
Clin Infect Dis, 37 (2003), pp. 1711-1717
[43.]
M. Masiá, S. Padilla, E. Bernal, M.V. Almenar, J. Molina, I. Hernández, et al.
Infl uence of antiretroviral therapy on oxidative stress and cardiovascular risk: a prospective cross-sectional study in HIV-infected patients.
Clin Ther, 29 (2007), pp. 1448-1455
[44.]
E.R. Kline, D.J. Kleinhenz, B. Liang, S. Dikalov, D.M. Guidot, C.M. Hart, et al.
Vascular oxidative stress and nitric oxide depletion in HIV-1 transgenic rats are reversed by glutathione restoration.
Am J Physiol Heart Circ Physiol, 294 (2008), pp. H2792-H2804
[45.]
M.O. Westendorp, V.A. Shatrov, K. Schulze-Osthoff, R. Frank, M. Kraft, M. Los, et al.
HIV-1 tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state.
EMBO J, 14 (1995), pp. 546-554
[46.]
R. Ben-Romano, A. Rudich, S. Etzion, R. Potashnik, E. Kagan, U. Greenbaum, et al.
Nelfinavir induces adipocyte insulin resistance through the inducion of oxidative stress: differential protective effect of antioxidant agents.
Antivir Ther, 11 (2006), pp. 1051-1060
[47.]
S. Chandra, D. Mondal, K.C. Agrawal.
HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone.
Exp Biol Med (Maywood), 234 (2009), pp. 442-453
[48.]
J.O. Kahn, B.D. Walker.
Current concepts: acute human immunodeficiency virus type 1 infection.
N Engl J Med, 339 (1998), pp. 33-39
[49.]
A. Mocroft, M. Bofill, M. Lipman, E. Medina, N. Borthwick, A. Timms, et al.
Cd8?, Cd38? lymphocyte percentage: a useful immunological marker for monitoring HIV-1-infected patients.
J Acquir Immune Defic Syndr Hum Retrovirol, 14 (1997), pp. 158-162
[50.]
J.M. Jacobson.
The rationale for immunosuppressive therapy for HIV infection.
Curr Opin HIV AIDS, 2 (2007), pp. 207-212
[51.]
P. Tebas, W.K. Henry, R. Matining, D. Weng-Cherng, J. Schmitz, H. Valdez, et al.
Metabolic and immune activation effects of treatment interruption in chronic HIV-1 infection: implications for cardiovascular risk.
[52.]
H. Rose, J. Woolley, J. Hoy, A. Dart, B. Bryant, A. Mijch, et al.
HIV infection and highdensity lipoprotein: the effect of the disease vs. the effect of treatment.
Metabolism, 55 (2006), pp. 90-95
[53.]
E. Bernal, M. Masiá, S. Padilla, F. Gutiérrez.
High-density lipoprotein cholesterol in HIVinfected patients: evidence for an association with HIV-1 viral load, antiretroviral therapy status, and regimen compositon.
AIDS Patient Care and STDs, 22 (2008), pp. 569-575
[54.]
Z. Mujawar, H. Rose, M.P. Morrow, T. Pushkarsky, L. Dubrovsky, N. Mukhamedova, et al.
Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.
[55.]
H. Rose, J. Hoy, J. Woolley, U. Tchoua, M. Bukrinsky, A. Dart, et al.
HIV infection and high density lipoprotein metabolism.
Atherosclerosis, 199 (2008), pp. 79-86
[56.]
A.N. Phillips, A. Carr, J. Neuhaus, F. Visnegarwala, R. Prineas, W.J. Burman, et al.
Interruption of antiretroviral therapy and risk of cardiovascular disease in persons with HIV-1 infection: exploratory analyses from the SMART trial.
Antivir Ther, 13 (2008), pp. 177-187
[57.]
W.E. Boden.
High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High-Density Lipoprotein Intervention Trial.
Am J Cardiol, 86 (2000), pp. 19L-22L
[58.]
Duprez D, and INSIGHT/SMART Group. High-density lipoprotein particles but not low-density lipoprotein particles predict cardiovascular disease events in HIV patients: strategies for management of ART Study. 16th Conference on Retroviruses and Opportunistic Infections (CROI 2009). Montreal. February 8-11, 2009. Abstract 149.
[59.]
A.N. Phillips, A. Carr, J. Neuhaus, F. Visnegarwala, R. Prineas, W.J. Burman, et al.
Interruption of antiretroviral therapy and risk of cardiovascular disease in persons with HIV-1 infection: exploratory analyses from the SMART trial.
Antivir Ther, 13 (2008), pp. 177-187
[60.]
E. Seoane, S. Resino, D. Micheloud, A. Moreno, J.C. De Quiros, R. Lorente, et al.
Lipid and apoprotein profile in HIV-1-infected patients after CD4-guided treatment interruption.
J Acquir Immune Defic Syndr, 48 (2008), pp. 455-459
[61.]
C. Grunfeld, D.P. Kotler, R. Hamadeh, A. Tierney, J. Wang, R.N. Pierson.
Hypertriglyceridemia in the acquired immunodeficiency syndrome.
Am J Med, 86 (1989), pp. 27-31
[62.]
E. Adam, J.L. Melnick, J.L. Probtsfield, B.L. Petrie, J. Burek, K.R. Bailey, et al.
High level of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis.
Lancet, 2 (1987), pp. 291-293
[63.]
N. Ishizaka, Y. Ishizaka, E. Takahashi, E.E. Toda, H. Hashimoto, M. Ohno, et al.
Increased prevalence of carotid atherosclerosis in hepatitis B virus carriers.
Circulation, 105 (2002), pp. 1028-1030
[64.]
J.B. Muhlestein.
Chronic infection and coronary artery disease.
Cardiol Rev, 84 (2000), pp. 123-129
[65.]
R. Ghotaslou, N. Aslanabadi, M. Ghojazadeh.
Hepatitis B virus infection and the risk of coronary atherosclerosis.
Ann Acad Med Singapore, 37 (2008), pp. 913-915
[66.]
H. Völzke, C. Schwahn, B. Wolff, R. Mentel, D.M. Robinson, V. Kleine, et al.
Hepatitis B and C virus infection and the risk of atherosclerosis in a general population.
Atherosclerosis, 174 (2004), pp. 99-103
[67.]
Y. Momiyama, R. Ohmori, R. Kato, H. Taniguchi, H. Nakamura, F. Ohsuzu.
Lack of any association between persistent hepatitis B or C virus infection and coronary artery disease.
Atherosclerosis, 181 (2005), pp. 211-213
[68.]
D.Y. Tong, X.H. Wang, C.F. Xu, Y.Z. Yang, S.D. Xiong.
Hepatitis B virus infection and coronary atherosclerosis: results from a population with relatively high prevalence of hepatitis B virus.
World J Gastroenterol, 11 (2005), pp. 1292
[69.]
J. Sung, Y.M. Song, Y.H. Choi, S. Ebrahim, G. Davey Smith.
Hepatitis B virus seropositivity and the risk of stroke and myocardial infarction.
Stroke, 38 (2007), pp. 1436-1441
[70.]
N. Ishizaka, Y. Ishizaka, E. Takahashi, E. Tooda, H. Hashimoto, R. Nagai, et al.
Association between hepatitis C virus seropositivity, carotid-artery plaque, and intimamedia thickening.
Lancet, 359 (2002), pp. 133-135
[71.]
O. Alyan, F. Kacmaz, O. Ozdemir, B. Deveci, R. Astan, A.S. Celebi, et al.
Hepatitis C infection is associated with increased coronary artery atherosclerosis defined by modified Reardon severity score system.
Circ J, 72 (2008), pp. 1960-1965
[72.]
C. Vassalle, S. Masini, F. Bianchi, G.C. Zucchelli.
Evidence for association between hepatitis C virus seropositivity and coronary artery disease.
Heart, 90 (2004), pp. 565-566
[73.]
Bedimo R, Westfall A, Mugavero M, Drechsler H, Khanna N, Saag M. HCV co-infection and risk of acute myocardial and cerebrovascular disease among HIV-infected patients in the pre-HAART and HAART eras. XVII International AIDS Conference. Mexico City, 3-8 August 2008. [THAB0205].
[74.]
Weber R, Sabin C, Reiss P, De Wit S, Worm S, Law M, et al, and The D:A:D Study Group. Hepatitis Virus Co-infections and Risk of Diabetes Mellitus and Myocardial Infarction in HIV-infected Persons: The D:A:D Study. 15th Conference on Retroviruses and Opportunistic Infections. Boston, 3-6 February 2008. Abstract 1082.
[75.]
R. Moucari, T. Asselah, D. Cazals-Hatem, H. Voitot, N. Boyer, M.P. Ripault, et al.
Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis.
Gastroenterology, 134 (2008), pp. 416-423
[76.]
Fartoux L, Poujol-Robert A, Guéchot J, Wendum D, Poupon R, Serfaty L. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut. 2005l;54:1003-8.
[77.]
G.F. De Larrañaga, S.D. Wingeyer, L.M. Puga, B.S. Alonso, J.A. Benetucci.
Relationship between hepatitis C virus (HCV) and insulin resistance, endothelial perturbation, and platelet activation in HIV-HCV-coinfected patients under highly active antiretroviral treatment.
Eur J Clin Microbiol Infect Dis, 25 (2006), pp. 98-103
[78.]
L. Serfaty, J. Capeau.
Hepatitis C, insulin resistance and diabetes: clinical and pathogenic data.
[79.]
I.A. Hanouneh, A.E. Feldstein, R. López, L. Yerian, A. Pillai, C.O. Zein, et al.
Clinical significance of metabolic syndrome in the setting of chronic hepatitis C virus infection.
Clin Gastroenterol Hepatol, 6 (2008), pp. 584-589
[80.]
F. Bani-Sadr, F. Carrat, P. Bedossa, L. Piroth, P. Cacoub, C Perronne, et al.
ANRS HC02 - Ribavic Study team Hepatic steatosis in HIV-HCV coinfected patients: analysis of risk factors.
AIDS, 20 (2006), pp. 525-531
[81.]
Y. Kawaguchi, T. Mizuta, N. Oza, H. Takahashi, K. Ario, T. Yoshimura, et al.
Eradication of hepatitis C virus by interferon improves whole-body insulin resistance and hyperinsulinaemia in patients with chronic hepatitis C.
[82.]
M. Rodríguez-Torres, S. Govindarajan, R. Solá, N. Clumeck, E. Lissen, M. Pessôa, et al.
Hepatic steatosis in HIV/HCV co-infected patients: correlates, efficacy and outcomes of anti-HCV therapy: a paired liver biopsy study.
J Hepatol, 48 (2008), pp. 756-764
[83.]
U. Oliviero, G. Bonadies, V. Apuzzi, M. Foggia, G. Bosso, S. Nappa, et al.
Human immunodeficiency virus per se exerts atherogenic effects.
Atherosclerosis, 204 (2009), pp. 586-589
[84.]
G. Schillaci, G.V. De Socio, G. Pucci, M.R. Mannarino, J. Helou, M. Pirro, et al.
Aortic stiffness in untreated adult patients with human immunodeficiency virus infection.
Hypertension, 52 (2008), pp. 308-313
[85.]
Baker J, Duprez D, Rapkin J, Grimm R, Neaton J, Henry K. Untreated HIV infection is associated with impaired arterial elasticity. 16th Conference on Retroviruses and Opportunistic Infections. Montreal, 8-11 February 2009. Abstract 725.
[86.]
Hsue P, Deeks S, Schnell A, Krone M, Xie Y, Lee T, et al. HIV infection is independently associated with detectable coronary artery calcium. 16th Conference on Retroviruses and Opportunistic Infections. Montreal, 8-11 February 2009. Abstract 724.
[87.]
Mestek M, Stauffer B, Westby C, Weil B, Van Guilder B, Greiner J, et al. Endothelial fibrinolytic capacity is impaired in HIV-1-infected men 16th Conference on Retroviruses and Opportunistic Infections. Montreal, 8-11 February 2009. Abstract 728.
Copyright © 2009. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos