metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica La entrada viral como diana terapéutica. Situación actual de los inhibidores d...
Información de la revista
Vol. 26. Núm. S11.
Maraviroc, el primer antagonista de los receptores de VIH
Páginas 5-11 (Octubre 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S11.
Maraviroc, el primer antagonista de los receptores de VIH
Páginas 5-11 (Octubre 2008)
Acceso a texto completo
La entrada viral como diana terapéutica. Situación actual de los inhibidores de la entrada
Viral entry as therapeutic target. Current situation of entry inhibitors
Visitas
2733
Fernando Arenzana-Seisdedos
Autor para correspondencia
farenzan@pasteur.fr

Correspondencia: Unité de Pathogénie Virale. Instituto Pasteur. 28, rue Dr. Roux. 75724 Paris Cedex 15. Francia.
Unidad De Patogenia Viral Molecular. Instituto Pasteur. París. Francia
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La entrada viral representa una etapa precoz y específica de la infección en la que distintas dianas virales y celulares son accesibles a la intervención terapéutica. En este proceso, CXCR4 y CCR5 actúan como moléculas correceptoras del VIH para su entrada en la célula huésped. El papel preponderante que desempeña el correceptor CCR5 en la transmisión y la propagación del VIH hace de esta molécula la diana de elección para el bloqueo de este mecanismo. En los últimos años se han generado distintos inhibidores específicos de los correceptores del VIH de los que sólo uno, maraviroc, ha sido aprobado para su uso clínico. Los inhibidores sintéticos desarrollados actúan como antagonistas alostéricos que inducen un estado o conformación del correceptor no permisiva para la unión de las glucoproteínas de la envuelta viral. Los antagonistas de CCR5 actúan en un amplio espectro de virus con afinidad o tropismo por este receptor (virus R5), se absorben por vía oral y tienen una potente actividad antiviral. Sin embargo, la perspectiva optimista que ofrecen estas nuevas moléculas inhibidoras hay que moderarla por la posible y esperada aparición de resistencias virales, por una parte, y la propagacion de especies virales con afinidad o tropismo por el receptor CXCR4 (virus X4), por otra. Esta situación es una realidad constatada en los primeros ensayos clínicos con estos fármacos y plantean de manera aguda y urgente la necesidad de disponer de inhibidores eficaces y no tóxicos de CXCR4 para bloquear esta vía alternativa de replicación y de escape viral.

Palabras clave:
VIH
Correceptores
Entrada viral
Quimioterapia antiviral

Viral entry is an early stage and specific of the infection in which different viral and cellular targets are accessible to therapeutic treatment. CXCR4 and CCR5 act in this process as coreceptor molecules of HIV for its entry into the host cell. The predominant role played by the CCR5 coreceptor in the transmission and spreading of HIV makes this molecule the target of choice for blocking this mechanism. In the last few years, different specific inhibitors of HIV coreceptors have been generated of which only one, Maraviroc, has been approved for clinical use. The synthetic inhibitors developed act as allosteric antagonists that induce a non-permissive state or configuration of the coreceptor for binding viral envelope-glycoproteins. The CCR5 antagonists act on a wide spectrum of viruses with affinity or tropism for this receptor (virus R5), are absorbed orally and have powerful antiviral activity. However, the optimistic perspective offered by these new molecules has to be moderated due to the possible and expected appearance of viral resistances, on the one hand, and the propagation of viral species with affinity or tropism for the CXCR4 receptor (virus X4). This situation is a reality verified in the first clinical trials with these drugs and they acutely and urgently show the need to have effective and non-toxic CXCR4 inhibitors available to block this alternative viral replication and escape route.

Key words:
HIV
Coreceptors
Viral entry
Antiviral chemotherapy
El Texto completo está disponible en PDF
Bibliografía
[1.]
H. Geyer, C. Holschbach, G. Hunsmann, J. Schneider.
Carbohydrates of human immunodeficiency virus. Structures of oligosaccharides linked to the envelope glycoprotein 120.
J Biol Chem, 263 (1988), pp. 11760-11767
[2.]
J.S. McDougal, M.S. Kennedy, J.M. Sligh, S.P. Cort, A. Mawle, J.K. Nicholson.
Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule.
Science, 231 (1986), pp. 382-385
[3.]
P.D. Kwong, R. Wyatt, J. Robinson, R.W. Sweet, J. Sodroski, W.A. Hendrickson.
Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody.
Nature, 393 (1998), pp. 648-659
[4.]
M. Samson, O. Labbe, C. Mollereau, G. Vassart, M. Parmentier.
Molecular cloning and functional expression of a new human CC-chemokine receptor gene.
Biochemistry, 35 (1996), pp. 3362-3367
[5.]
Y. Feng, C.C. Broder, P.E. Kennedy, E.A. Berger.
HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor.
Science, 272 (1996), pp. 872-877
[6.]
J. Bockaert, J.P. Pin.
Molecular tinkering of G protein-coupled receptors: an evolutionary success.
Embo J, 18 (1999), pp. 1723-1729
[7.]
F. Cocchi, A.L. DeVico, A. Garzino-Demo, S.K. Arya, R.C. Gallo, P. Lusso.
Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells.
Science, 270 (1995), pp. 1811-1815
[8.]
E. Oberlin, A. Amara, F. Bachelerie, C. Bessia, J.L. Virelizier, F. Arenzana-Seisdedos, et al.
The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1.
Nature, 382 (1996), pp. 833-835
[9.]
K. Balabanian, J. Harriague, C. Decrion, B. Lagane, S. Shorte, F. Baleux, et al.
CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes.
J Immunol, 173 (2004), pp. 7150-7160
[10.]
M. Farzan, T. Mirzabekov, P. Kolchinsky, R. Wyatt, M. Cayabyab, N.P. Gerard, et al.
Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry.
Cell, 96 (1999), pp. 667-676
[11.]
M. Farzan, G.J. Babcock, N. Vasilieva, P.L. Wright, E. Kiprilov, T. Mirzabekov, et al.
The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry.
J Biol Chem, 277 (2002), pp. 29484-29489
[12.]
M. Samson, G. LaRosa, F. Libert, P. Paindavoine, M. Detheux, G. Vassart, et al.
The second extracellular loop of CCR5 is the major determinant of ligand specificity.
J Biol Chem, 272 (1997), pp. 24934-24941
[13.]
Z. Wang, B. Lee, J.L. Murray, F. Bonneau, Y. Sun, V. Schweickart, et al.
CCR5 HIV-1 coreceptor activity. Role of cooperativity between residues in N-terminal extracellular and intracellular domains.
J Biol Chem, 274 (1999), pp. 28413-28419
[14.]
C.C. Huang, M. Tang, M.Y. Zhang, S. Majeed, E. Montabana, R.L. Stanfield, et al.
Structure of a V3-containing HIV-1 gp120 core.
Science, 310 (2005), pp. 1025-1028
[15.]
S.S. Hwang, T.J. Boyle, H.K. Lyerly, B.R. Cullen.
Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1.
Science, 253 (1991), pp. 71-74
[16.]
C.D. Rizzuto, R. Wyatt, N. Hernández-Ramos, Y. Sun, P.D. Kwong, W.A. Hendrickson, J. Sodroski.
A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding.
Science, 280 (1998), pp. 1949-1953
[17.]
D.C. Chan, D. Fass, J.M. Berger, P.S. Kim.
Core structure of gp41 from the HIV envelope glycoprotein.
Cell, 89 (1997), pp. 263-273
[18.]
D.M. Eckert, P.S. Kim.
Mechanisms of viral membrane fusion and its inhibition.
Annu Rev Biochem, 70 (2001), pp. 777-810
[19.]
T.L. Hoffman, R.W. Doms.
HIV-1 envelope determinants for cell tropism and chemokine receptor use.
Mol Membr Biol, 16 (1999), pp. 57-65
[20.]
G. Pollakis, S. Kang, A. Kliphuis, M.I. Chalaby, J. Goudsmit, W.A. Paxton.
N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization.
J Biol Chem, 276 (2001), pp. 13433-13441
[21.]
J.J. Lataillade, J. Domenech, M.C. Le Bousse-Kerdiles.
Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking.
Eur Cytokine Netw, 15 (2004), pp. 177-188
[22.]
K. Balabanian, B. Lagane, J.L. Pablos, L. Laurent, T. Planchenault, O. Verola, et al.
WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12.
Blood, 105 (2005), pp. 2449-2457
[23.]
A. Zlotnik.
Chemokines and cancer.
Int J Cancer, 119 (2006), pp. 2026-2029
[24.]
W.W. Agace, A. Amara, A.I. Roberts, J.L. Pablos, S. Thelen, M. Uguccioni, et al.
Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation.
Curr Biol, 10 (2000), pp. 325-328
[25.]
F. Arenzana-Seisdedos, M. Parmentier.
Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands.
Semin Immunol, 18 (2006), pp. 387-403
[26.]
M. Samson, F. Libert, B.J. Doranz, J. Rucker, C. Liesnard, C.M. Farber, et al.
Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene.
Nature, 382 (1996), pp. 722-725
[27.]
Y. Zhou, T. Kurihara, R.P. Ryseck, Y. Yang, C. Ryan, J. Loy, et al.
Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor.
J Immunol, 160 (1998), pp. 4018-4025
[28.]
W.G. Glass, D.H. McDermott, J.K. Lim, S. Lekhong, S.F. Yu, W.A. Frank, et al.
CCR5 deficiency increases risk of symptomatic West Nile virus infection.
J Exp Med, 203 (2006), pp. 35-40
[29.]
F. Castellino, A.Y. Huang, G. Altan-Bonnet, S. Stoll, C. Scheinecker, R.N. Germain.
Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction.
Nature, 440 (2006), pp. 890-895
[30.]
E.A. Berger, P.M. Murphy, J.M. Farber.
Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease.
Annu Rev Immunol, 17 (1999), pp. 657-700
[31.]
J.P. Moore, S.G. Kitchen, P. Pugach, J.A. Zack.
The CCR5 and CXCR4 coreceptors-central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection.
AIDS Res Hum Retroviruses, 20 (2004), pp. 111-126
[32.]
D.D. Richman, S.A. Bozzette.
The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression.
J Infect Dis, 169 (1994), pp. 968-974
[33.]
M. Guadalupe, E. Reay, S. Sankaran, T. Prindiville, J. Flamm, A. McNeil, et al.
Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy.?.
Virol, 77 (2003), pp. 11708-11717
[34.]
J.C. Grivel, M.L. Penn, D.A. Eckstein, B. Schramm, R.F. Speck, N.W. Abbey, et al.
Human immunodeficiency virus type 1 coreceptor preferences determine target T-cell depletion and cellular tropism in human lymphoid tissue.
J Virol, 74 (2000), pp. 5347-5351
[35.]
A. Amara, S.L. Gall, O. Schwartz, J. Salamero, M. Montes, P. Loetscher, et al.
HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication.
J Exp Med, 186 (1997), pp. 139-146
[36.]
F. Arenzana-Seisdedos, J.L. Virelizier, D. Rousset, I. Clark-Lewis, P. Loetscher, B. Moser, et al.
HIV blocked by chemokine antagonist.
Nature, 383 (1996), pp. 400
[37.]
O. Hartley, H. Gaertner, J. Wilken, D. Thompson, R. Fish, A. Ramos, et al.
Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors.
Proc Natl Acad Sci U S A, 101 (2004), pp. 16460-16465
[38.]
W. Olson, H. Doshan, C. Zhan, J. Mezzatesta, A. Assumma, R. Czarnecky, et al.
Prolonged coating of CCR5 lymphocytes by PRO 140, a humanized CCR5 monoclonal antibody for HIV-1 therapy.
13th Conference on Retroviruses and Opportunistic Infections,
[39.]
F. Giguel, L. Beebe, T.S. Migone, D. Kuritzkes.
The anti-CCR5 mAb004 inhibits HIV-1 replication synergistically in combination with other antiretroviral agents but does not select for resistance during in vitro passage.
13th Conference on Retroviruses and Opportunistic Infections,
[40.]
S. Hatse, K. Princen, L.O. Gerlach, G. Bridger, G. Henson, E. De Clercq, et al.
Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100.
Mol Pharmacol, 60 (2001), pp. 164-173
[41.]
W.C. Liles, H.E. Broxmeyer, E. Rodger, B. Wood, K. Hubel, S. Cooper, et al.
Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist.
Blood, 102 (2003), pp. 2728-2730
[42.]
K.O. Tanaka, R. Tanaka, S. Kumakura, A. Shimoyamada, K. Hirose, M. Yanaka, et al.
Development of novel orally bioavailable CXCR4 antagonists, KRH-3955 and KRH-3140: binding specificity, pharmacokinetics and anti-HIV-1 activity in vivo and in vitro.
13th Conference on Retroviruses and Opportunistic Infections,
[43.]
M. Baba, O. Nishimura, N. Kanzaki, M. Okamoto, H. Sawada, Y. Iizawa, et al.
A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity.
Proc Natl Acad Sci U S A, 96 (1999), pp. 5698-5703
[44.]
M. Baba, H. Miyake, X. Wang, M. Okamoto, K. Takashima.
Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652.
Antimicrob Agents Chemother, 51 (2007), pp. 707-715
[45.]
J.M. Strizki, C. Tremblay, S. Xu, L. Wojcik, N. Wagner, W. Gonsiorek, et al.
Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1.
Antimicrob Agents Chemother, 49 (2005), pp. 4911-4919
[46.]
S.Z. Gulick, C. Flexner, M. Hughes, P. Skolnik, C. Godfrey, W. Greaves, et al.
ACTG 5211: phase II study of the safety and efficacy of vicriviroc in HIV-infected treatment-experienced subjects.
Sixteenth International AIDS Conference,
[47.]
K. Maeda, H. Nakata, Y. Koh, T. Miyakawa, H. Ogata, Y. Takaoka, et al.
Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro.
[48.]
C. Crabb.
GlaxoSmithKline ends aplaviroc trials.
[49.]
P. Dorr, M. Westby, S. Dobbs, P. Griffin, B. Irvine, M. Macartney, et al.
Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.
Antimicrob Agents Chemother, 49 (2005), pp. 4721-4732
[50.]
G. Fatkenheuer, A.L. Pozniak, M.A. Johnson, A. Plettenberg, S. Staszewski, A.I. Hoepelman, et al.
Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1.
Nat Med, 11 (2005), pp. 1170-1172
[51.]
H. Mayer, E. Van der Ryst, M. Saag, B. Clotet, G. Fätkenheuer, N. Clumeck, et al.
Safety and efficacy of maraviroc, a novel CCR5 antagonist, when used in combination with optimized background therapy for the treatment of antiretroviral-experienced subjects infected with dual/mixed-tropic HIV-1: 24-week results of a phase 2b exploratory trial.
Sixteenth International AIDS Conference,
[52.]
M. Westby, C. Smith-Burchnell, J. Mori, M. Lewis, M. Mosley, M. Stockdale, et al.
Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry.
J Virol, 81 (2007), pp. 2359-2371
[53.]
J. Dumond, K. Patterson, A. Pecha, R. Werner, E. Andrews, B. Damle, et al.
Maraviroc (MVC) pharmacokinetics (PK) in blood plasma (BP), genital tract (GT) fluid and tissue in healthy female volunteers.
15th Conference on Retroviruses and Opportunistic Infections,
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.eimc.2023.03.001
No mostrar más