Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Innovations in the molecular epidemiology of tuberculosis
Información de la revista
Vol. 29. Núm. S1.
Update on tuberculosis
Páginas 8-13 (Marzo 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 29. Núm. S1.
Update on tuberculosis
Páginas 8-13 (Marzo 2011)
Acceso a texto completo
Innovations in the molecular epidemiology of tuberculosis
Innovaciones en la epidemiología molecular de la tuberculosis
Visitas
3769
Darío García de Viedmaa,b,
Autor para correspondencia
dgviedma2@gmail.com

Corresponding author.
, Igor Mokrousovc, Nalin Rastogid
a Servicio de Microbiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
b CIBER de Enfermedades Respiratorias (CIBERES), Spain
c Laboratory of Molecular Microbiology, St. Petersburg Pasteur Institute, St. Petersburg, Russia
d Tuberculosis and Mycobacteria Unit, WHO Supranational TB Reference Laboratory, Institut Pasteur de Guadeloupe Morne Joliviere, Abymes, Cedex, Guadeloupe, France
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Abstract

The application of genotyping tools to the analysis of tuberculosis (TB) has allowed us to identify clinical isolates of Mycobacterium tuberculosis to strain level. M. tuberculosis fingerprinting has been applied at different levels: a) in the laboratory, to optimize identification of cross-contamination events which can lead to a false diagnosis; b) in the patient, to determine whether recurrences are due to reactivations or exogenous reinfections or to identify cases coinfected by more than one strain; c) at the micropopulation level, to identify clusters of cases infected by the same strains (recent transmission) and to differentiate them from orphan cases that are most probably due to reactivations; and d) at the macropopulation level, to define the global distribution of M. tuberculosis lineages, to monitor the international spread of high-risk strains, and to explore the evolutionary features of M. tuberculosis. In recent years, important methodological and strategic advances have been applied at these different levels of analysis. Rather than provide an exhaustive review, the present study focuses on specific advances in micropopulation and macropopulation analysis.

Keywords:
Tuberculosis
Molecular epidemiology
Innovations
Recent transmission
Evolution
Resumen

La aplicación de estrategias de genotipado al análisis de la tuberculosis (TB) ha permitido discriminar los aislados de Mycobacterium tuberculosis a nivel de cepa en distintos contextos: a) en el laboratorio, para optimizar eventos de contaminación cruzada; b) en el paciente, para discriminar recurrencias debidas a reactivaciones o reinfecciones e identificar casos con infecciones mixtas; c) en el contexto “micropoblacional”, para identificar casos infectados por una misma cepa (transmisión reciente), y d) en el contexto “macropoblacional”, para definir la distribución internacional de linajes de M. tuberculosis, de cepas de alto riesgo o analizar aspectos evolutivos. En los últimos años hemos asistido a avances metodológicos y analíticos en cada uno de los contextos mencionados. Esta revisión no pretende ofrecer un análisis exhaustivo de éstos, sino destacar algunos avances de especial interés en el contexto del análisis micro y macropoblacional.

Palabras clave:
Tuberculosis
Epidemiología molecular
Innovaciones
Transmisión reciente
Evolución
El Texto completo está disponible en PDF
References
[1.]
U.R. Dahle, P. Sandven, E. Heldal, D.A. Caugant.
Continued low rates of transmission of Mycobacterium tuberculosis in Norway.
J Clin Microbiol, 41 (2003), pp. 2968-2973
[2.]
H.M. El Sahly, G.J. Adams, H. Soini, L. Teeter, J.M. Musser, E.A. Graviss.
Epidemiologic differences between United States- and foreign-born tuberculosis patients in Houston, Texas.
J Infect Dis, 183 (2001), pp. 461-468
[3.]
R. Diel, S. Rusch-Gerdes, S. Niemann.
Molecular epidemiology of tuberculosis among immigrants in Hamburg, Germany.
J Clin Microbiol, 42 (2004), pp. 2952-2960
[4.]
N. Alonso Rodríguez, F. Chaves, J. Iñigo, E. Bouza, D. García de Viedma, S. Andrés, et al.
Transmission permeability of tuberculosis involving immigrants, revealed by a multicentre analysis of clusters.
Clin Microbiol Infect, 15 (2009), pp. 435-442
[5.]
S. Borrell, M. Español, A. Orcau, G. Tudó, F. March, J.A. Caylà, et al.
Tuberculosis transmission patterns among Spanish-born and foreign-born populations in the city of Barcelona.
Clin Microbiol Infect, 16 (2010), pp. 568-574
[6.]
J. Barniol, S. Niemann, V.R. Louis, B. Brodhun, C. Dreweck, E. Richter, et al.
Transmission dynamics of pulmonary tuberculosis between autochthonous and immigrant subpopulations.
BMC Infect Dis, 9 (2009), pp. 197
[7.]
S. Borrell, M. Español, A. Orcau, G. Tudó, F. March, J.A. Caylà, et al.
Factors associated with differences between conventional contact tracing and molecular epidemiology in study of tuberculosis transmission and analysis in the city of Barcelona, Spain.
J Clin Microbiol, 47 (2009), pp. 198-204
[8.]
L.K. Fitzpatrick, J.A. Hardacker, W. Heirendt, T. Agerton, A. Streicher, H. Melnyk, et al.
A preventable outbreak of tuberculosis investigated through an intricate social network.
Clin Infect Dis, 33 (2001), pp. 1801-1806
[9.]
H. Van Deutekom, S.P. Hoijng, P.E. De Haas, M.W. Langendam, A. Horsman, D. Van Soolingen, et al.
Clustered tuberculosis cases: do they represent recent transmission and can they be detected earlier?.
Am J Respir Crit Care Med, 169 (2004), pp. 806-810
[10.]
S.E. Weis, J.M. Pogoda, Z. Yang, M.D. Cave, C. Wallace, M. Kelley, et al.
Transmission dynamics of tuberculosis in Tarrant county, Texas.
Am J Respir Crit Care Med, 166 (2002), pp. 36-42
[11.]
M. Martínez-Lirola, N. Alonso-Rodríguez, M.L. Sánchez, M. Herranz, S. Andrés, T. Peñafiel, et al.
Advanced survey of tuberculosis transmission in a complex socioepidemiologic scenario with a high proportion of cases in immigrants.
Clin Infect Dis, 47 (2008), pp. 8-14
[12.]
P.K. Moonan, J. Oppong, B. Sahbazian, K.P. Singh, R. Sandhu, G. Drewyer, et al.
What is the outcome of targeted tuberculosis screening based on universal genotyping and location?.
Am J Respir Crit Care Med, 174 (2006), pp. 599-604
[13.]
K. Kremer, D. Van Soolingen, R. Frothingham, W.H. Haas, P.W. Hermans, C. Martin, et al.
Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility.
J Clin Microbiol, 37 (1999), pp. 2607-2618
[14.]
N. Thorne, J.T. Evans, E.G. Smith, P.M. Hawkey, S. Gharbia, C. Arnold.
An IS6110-targeting fluorescent amplified fragment length polymorphism alternative to IS6110 restriction fragment length polymorphism analysis for Mycobacterium tuberculosis DNA fingerprinting.
Clin Microbiol Infect, 13 (2007), pp. 964-970
[15.]
J. Zhang, E. Abadía, G. Refregier, S. Tafaj, M.L. Boschiroli, B. Guillard, et al.
Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of ‘spoligotyping’ with new spacers and a microbead-based hybridization assay.
J Med Microbiol, 59 (2010), pp. 285-294
[16.]
E. Mazars, S. Lesjean, A.L. Banuls, M. Gilbert, V. Vincent, B. Gicquel, et al.
Highresolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology.
Proc Natl Acad Sci USA, 98 (2001), pp. 1901-1906
[17.]
P. Supply, S. Lesjean, E. Savine, K. Kremer, D. Van Soolingen, C. Locht.
Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units.
J Clin Microbiol, 39 (2001), pp. 3563-3571
[18.]
Y.J. Sun, R. Bellamy, A.S. Lee, S.T. Ng, S. Ravindran, S.Y. Wong, et al.
Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to examine genetic diversity of Mycobacterium tuberculosis in Singapore.
J Clin Microbiol, 42 (2004), pp. 1986-1993
[19.]
A.N. Scott, D. Menzies, T.N. Tannenbaum, L. Thibert, R. Kozak, L. Joseph, et al.
Sensitivities and specificities of spoligotyping and mycobacterial interspersed repetitive unit-variable-number tandem repeat typing methods for studying molecular epidemiology of tuberculosis.
J Clin Microbiol, 43 (2005), pp. 89-94
[20.]
D. García de Viedma, N. Alonso Rodríguez, S. Andrés, M. Martínez-Lirola, M.J. Ruiz Serrano, E. Bouza.
Evaluation of alternatives to RFLP for the analysis of clustered cases of tuberculosis.
Int J Tuberc Lung Dis, 10 (2006), pp. 454-459
[21.]
L.S. Cowan, L. Diem, T. Monson, P. Wand, D. Temporado, T.V. Oemig, et al.
Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States.
J Clin Microbiol, 43 (2005), pp. 688-695
[22.]
M.C. Oelemann, R. Diel, V. Vatin, W. Haas, S. Rusch-Gerdes, C. Locht, et al.
Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis.
J Clin Microbiol, 45 (2007), pp. 691-697
[23.]
P. Supply, C. Allix, S. Lesjean, M. Cardoso-Oelemann, S. Rusch-Gerdes, E. Willery, et al.
Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis.
J Clin Microbiol, 44 (2006), pp. 4498-4510
[24.]
J.T. Evans, P.M. Hawkey, E.G. Smith, K.A. Boese, R.E. Warren, G. Hong.
Automated high-throughput mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis strains by a combination of PCR and nondenaturing high-performance liquid chromatography.
J Clin Microbiol, 42 (2004), pp. 4175-4180
[25.]
N. Alonso-Rodríguez, M. Martínez-Lirola, M.L. Sánchez, M. Herranz, T. Peñafiel, M.C. Bonillo, et al.
Prospective universal application of mycobacterial interspersed repetitive-unit-variable-number tandem-repeat genotyping to characterize Mycobacterium tuberculosis isolates for fast identification of clustered and orphan cases.
J Clin Microbiol, 47 (2009), pp. 2026-2032
[26.]
C. Allix-Beguec, M. Fauville-Dufaux, P. Supply.
Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis.
J Clin Microbiol, 46 (2008), pp. 1398-1406
[27.]
V. Valcheva, I. Mokrousov, O. Narvskaya, N. Rastogi, N. Markova.
Utility of new 24-locus variable-number tandem-repeat typing for discriminating Mycobacterium tuberculosis clinical isolates collected in Bulgaria.
J Clin Microbiol, 46 (2008), pp. 3005-3011
[28.]
K.S. Blackwood, J.N. Wolfe, A.M. Kabani.
Application of mycobacterial interspersed repetitive unit typing to Manitoba tuberculosis cases: can restriction fragment length polymorphism be forgotten?.
J Clin Microbiol, 42 (2004), pp. 5001-5006
[29.]
I. Mokrousov, O. Narvskaya, A. Vyazovaya, J. Millet, T. Otten, B. Vishnevsky, et al.
Mycobacterium tuberculosis Beijing genotype in Russia: in search of informative variable-number tandem-repeat loci.
J Clin Microbiol, 46 (2008), pp. 3576-3584
[30.]
J. Millet, C. Miyagi-Shiohira, N. Yamane, C. Sola, N. Rastogi.
Assessment of mycobacterial interspersed repetitive unit-QUB markers to further discriminate the Beijing genotype in a population-based study of the genetic diversity of Mycobacterium tuberculosis clinical isolates from Okinawa, Ryukyu Islands, Japan.
J Clin Microbiol, 45 (2007), pp. 3606-3615
[31.]
I.C. Shamputa, J. Lee, C. Allix-Beguec, E.J. Cho, J.I. Lee, V. Rajan, et al.
Genetic diversity of Mycobacterium tuberculosis isolates from a tertiary care tuberculosis hospital in South Korea.
J Clin Microbiol, 48 (2010), pp. 387-394
[32.]
P. Velji, V. Nikolayevskyy, T. Brown, F. Drobniewski.
Discriminatory ability of hypervariable variable number tandem repeat loci in population-based analysis of Mycobacterium tuberculosis strains, London, UK.
Emerg Infect Dis, 15 (2009), pp. 1609-1616
[33.]
P.M. Hawkey, E.G. Smith, J.T. Evans, P. Monk, G. Bryan, H.H. Mohamed, et al.
Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110-based restriction fragment length polymorphism analysis for investigation of apparently clustered cases of tuberculosis.
J Clin Microbiol, 41 (2003), pp. 3514-3520
[34.]
M. Ashworth, K.L. Horan, R. Freeman, E. Oren, M. Narita, G.A. Cangelosi.
Use of PCR-based Mycobacterium tuberculosis genotyping to prioritize tuberculosis outbreak control activities.
J Clin Microbiol, 46 (2008), pp. 856-862
[35.]
S. Borrell, N. Thorne, M. Español, C. Mortimer, A. Orcau, P. Coll, et al.
Comparison of four-colour IS6110-fAFLP with the classic IS6110-RFLP on the ability to detect recent transmission in the city of Barcelona, Spain.
Tuberculosis (Edinb), 89 (2009), pp. 233-237
[36.]
H. Van Deutekom, P. Supply, P.E. De Haas, E. Willery, S.P. Hoijng, C. Locht, et al.
Molecular typing of Mycobacterium tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis, a more accurate method for identifying epidemiological links between patients with tuberculosis.
J Clin Microbiol, 43 (2005), pp. 4473-4479
[37.]
N. Alonso Rodríguez, M. Martínez-Lirola, F. Chaves, J. Iñigo, M. Herranz, V. Ritacco, et al.
Differences in the robustness of clusters involving the Mycobacterium tuberculosis strains most frequently isolated from immigrant cases in Madrid.
Clin Microbiol Infect, 16 (2010), pp. 1544-1554
[38.]
M.M. Gutacker, J.C. Smoot, C.A. Migliaccio, S.M. Ricklefs, S. Hua, D.V. Cousins, et al.
Genome-wide analysis of synonymous single nucleotide polymorphisms in M. tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains.
Genetics, 162 (2002), pp. 1533-1543
[39.]
A.E. Hirsh, A.G. Tsolaki, K. DeRiemer, M.W. Feldman, P.M. Small.
Stable association between strains of Mycobacterium tuberculosis and their human host populations.
Proc Natl Acad Sci USA, 101 (2004), pp. 4871-4876
[40.]
I. Filliol, A.S. Motiwala, M. Cavatore, W. Qi, M.H. Hazbón, M. Bobadilla del Valle, et al.
Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set.
J Bacteriol, 188 (2006), pp. 759-772
[41.]
S. Gagneux, K. DeRiemer, T. Van, M. Kato-Maeda, B.C. de Jong, S. Narayanan, et al.
Variable host-pathogen compatibility in Mycobacterium tuberculosis.
Proc Natl Acad Sci USA, 103 (2006), pp. 2869-2873
[42.]
T. Dos Vultos, O. Mestre, J. Rauzier, M. Golec, N. Rastogi, V. Rasolofo, et al.
Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis.
[43.]
S. Gagneux, P.M. Small.
Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development.
Lancet Infect Dis, 7 (2007), pp. 328-337
[44.]
R. Brosch, S.V. Gordon, M. Marmiesse, P. Brodin, C. Buchrieser, K. Eiglmeier, et al.
A new evolutionary scenario for the Mycobacterium tuberculosis complex.
Proc Natl Acad Sci USA, 99 (2002), pp. 3684-3689
[45.]
M. Marmiesse, P. Brodin, C. Buchrieser, C. Gutiérrez, N. Simoes, V. Vincent, et al.
Macro-array and bioinformatic analyses reveal mycobacterial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex.
Microbiology, 150 (2004), pp. 483-496
[46.]
G.G. Mahairas, P.J. Sabo, M.J. Hickey, D.C. Singh, C.K. Stover.
Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis.
J Bacteriol. 1996, 178 (1996), pp. 1274-1282
[47.]
S. Niemann, C.U. Köser, S. Gagneux, C. Plinke, S. Homolka, H. Bignell, et al.
Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.
[48.]
I. Mokrousov, H.M. Ly, T. Otten, N.N. Lan, B. Vyshnevskyi, S. Hoffner, et al.
Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography.
Genome Res, 15 (2005), pp. 1357-1364
[49.]
T. Wirth, F. Hildebrand, C. Allix-Béguec, F. Wölbeling, T. Kubica, K. Kremer, et al.
Origin, spread and demography of the Mycobacterium tuberculosis complex.
PLoS Pathog, 4 (2008),
[50.]
R. Hershberg, M. Lipatov, P.M. Small, H. Sheffer, S. Niemann, S. Homolka, et al.
High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography.
[51.]
I. Mokrousov, V. Valcheva, N. Sovhozova, A. Aldashev, N. Rastogi, J. Isakova.
Penitentiary population of Mycobacterium tuberculosis in Kyrgyzstan: Exceptionally high prevalence of the Beijing genotype and its Russia-specific subtype.
Infect Genet Evol, 9 (2009), pp. 1400-1405
[52.]
L.L. Cavalli-Sforza, P. Menozzi, A. Piazza.
The History and Geography of Human Genes.
Princeton University Press, (1996),
[53.]
I. Mokrousov.
Genetic geography of Mycobacterium tuberculosis Beijing genotype: a multifacet mirror of human history.
Infect Genet Evol, 8 (2008), pp. 777-785
[54.]
M. Caws, G. Thwaites, S. Dunstan, T.R. Hawn, N.T. Lan, N.T. Thuong, et al.
The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis.
PLoS Pathog, 4 (2008),
[55.]
O.B. Ogarkov, T.V. Medvedeva, O.M. Nekipelov, S.L. Antipina, M.L. Men’shikov.
Study of DC-SIGN gene polymorphism in patients infected with Mycobacterium Tuberculosis strains of different genotypes in the Irkutsk Region [article in Russian].
Probl Tuberk Bolezn Legk, 11 (2007), pp. 37-42
[56.]
M. Hanekom, G.D. Van der Spuy, N.C. Gey Van Pittius, C.R. McEvoy, S.L. Ndabambi, T.C. Victor, et al.
Evidence that the spread of Mycobacterium tuberculosis strains with the Beijing genotype is human population dependent.
J Clin Microbiol, 45 (2007), pp. 2263-2266
[57.]
K. Kremer, M.J. Van-der-Werf, B.K. Au, D.D. Anh, K.M. Kam, H.R. Van-Doorn, et al.
Vaccine-induced immunity circumvented by typical Mycobacterium tuberculosis Beijing strains.
Emerg Infect Dis, 15 (2009), pp. 335-339
[58.]
A. Namouchi, A. Karboul, B. Mhenni, N. Khabouchi, R. Haltiti, R. Ben Hassine, et al.
Genetic profiling of Mycobacterium tuberculosis in Tunisia: predominance and evidence for the establishment of a few genotypes.
J Med Microbiol, 57 (2008), pp. 864-872
[59.]
L.C. Lazzarini, S.M. Spindola, H. Bang, A.L. Gibson, S. Weisenberg, W. Da Silva Carvalho, et al.
RDRio Mycobacterium tuberculosis infection is associated with a higher frequency of cavitary pulmonary disease.
J Clin Microbiol, 46 (2008), pp. 2175-2183
[60.]
S. Dubiley, A. Ignatova, T. Mukhina, A. Nizova, S. Blagodatskikh, V. Stepanshina, et al.
Molecular epidemiology of tuberculosis in the Tula area, central Russia, before the introduction of the Directly Observed Therapy Strategy.
Clin Microbiol Infect, 16 (2010), pp. 1421-1426
[61.]
S.N. Niobe-Eyangoh, C. Kuaban, P. Sorlin, J. Thonnon, V. Vincent, M.C. Gutiérrez.
Molecular characteristics of strains of the Cameroon family, the major group of Mycobacterium tuberculosis in a country with a high prevalence of tuberculosis.
J Clin Microbiol, 42 (2004), pp. 5029-5035
[62.]
V. Valcheva, I. Mokrousov, S. Panaiotov, E. Bachiiska, T. Zozio, C. Sola, et al.
Bulgarian specificity and controversial phylogeography of Mycobacterium tuberculosis spoligotype ST125_BGR.
FEMS Immunol Med Microbiol, 59 (2010), pp. 90-99
[63.]
L.S. Cowan, L. Diem, M.C. Brake, J.T. Crawford.
Transfer of a Mycobacterium tuberculosis genotyping method, Spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system.
J Clin Microbiol, 42 (2004), pp. 474-477
[64.]
C. Honisch, M. Mosko, C. Arnold, S.E. Gharbia, R. Diel, S. Niemann.
Replacing reverse line-blot hybridization spoligotyping of the Mycobacterium tuberculosis complex.
J Clin Microbiol, 48 (2010), pp. 1520-1526
[65.]
Rastogi N, Sola C. Molecular Evolution of the Mycobacterium tuberculosis Complex In: Palomino JC, Cardoso Leão S, Ritacco V, editors. Tuberculosis 2007. Available at: http://www.tuberculosistextbook.com/index.htm
[66.]
C. Allix-Béguec, D. Harmsen, T. Weniger, P. Supply, S. Niemann.
Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates.
J Clin Microbiol, 46 (2008), pp. 2692-2699
[67.]
K. Brudey, J.R. Driscoll, L. Rigouts, W.M. Prodinger, A. Gori, S.A. Al-Hajoj, et al.
Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology.
BMC Microbiol, 6 (2006), pp. 23
[68.]
A.I. López-Calleja, P. Gavín, M.A. Lezcano, M.A. Vitoria, M.J. Iglesias, J. Guimbao, et al.
Unsuspected and extensive transmission of a drug-susceptible Mycobacterium tuberculosis strain.
BMC Pulm Med, 9 (2009), pp. 3
Copyright © 2011. Elsevier España S.L.. All rights reserved
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.eimc.2020.07.003
No mostrar más