Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica In vitro activity of echinocandins against non-Candida albicans: Is echinocandin...
Información de la revista
Vol. 29. Núm. S2.
Micafungina: nuevos retos y nuevas posibilidades en el tratamiento de la infección fúngica invasora
Páginas 3-9 (Marzo 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 29. Núm. S2.
Micafungina: nuevos retos y nuevas posibilidades en el tratamiento de la infección fúngica invasora
Páginas 3-9 (Marzo 2011)
DOI: 10.1016/S0213-005X(11)70002-7
Acceso a texto completo
In vitro activity of echinocandins against non-Candida albicans: Is echinocandin antifungal activity the same?
Actividad in vitro de las equinocandinas frente a Candida no albicans: ¿todas las equinocandinas son iguales?
Visitas
...
Ana Espinel-Ingroffa,
Autor para correspondencia
, Emilia Cantónb
a VCU Medical Center, Richmond, VA, USA
b Unidad de Microbiología Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Abstract

The echinocandins anidulafungin, caspofungin, and micafungin have a broad and similar spectrum of in vitro and in vivo activity against most Candida spp. Minimal inhibitory concentrations (MICs) for Candida spp. are usually below 1 μg/mL for most isolates. The exceptions are Candidaparapsilosis and C. guilliermondii. Species-specific clinical breakpoints (CBPs) and epidemiologic cutoff values (ECVs) have been proposed by the Clinical and Laboratory Standards Institute (CLSI) for the eight most common Candida spp. versus each echinocandin; these values are useful to detect in vitro antifungal resistance (CBPs) and to identify isolates harboring fks mutations or having reduced susceptibility (ECVs). This paper presents a review of the literature (2006–2010) regarding the in vitro activity similarities or differences among the three echinocandins against Candida spp.; different parameters or measurements of in vitro potency were evaluated. The focus of the review is the non-Candida albicans species.

Keywords:
Echinocandins
Echinocandins activity non-Candida albicans
Echinocandin ECVs for non-Candida albicans
Echinocandin CBPs or non-Candida albicans
Resumen

Las 3 candinas, anidulafungina, caspofungina y micafungina, comparten el mismo amplio espectro de acción y actividad, tanto in vitro como in vivo, sobre Candida spp. Las concentraciones mínimas inhibitorias (CMI) para la mayoría de los aislados de Candida spp. son generalmente inferiores a 1 μg/mL, excepto para C. parapsilosis y C. guilliermondii. El Clinical and Laboratory Standards Institute (CLSI) ha propuesto recientemente puntos de corte clínicos (PCC) y puntos de corte epidemiológicos (PCE) a cada candina para las 8 especies más comunes de Candida. Estos valores son útiles para detectar resistencias (PCC) e identificar aislados con mutaciones en el gen fks o con sensibilidad reducida (PCE). En este trabajo se revisa la bibliografía (2006–2010) de la actividad in vitro de las equinocandinas frente a Candida no albicans analizando diferentes parámetros de actividad in vitro para evaluar las diferencias entre ellas.

Palabras clave:
Equinocandinas
Equinocandinas y Candida no albicans
PCE equinocandinas y Candida no albicans
PCC equinocandinas y Candida no albicans
El Texto completo está disponible en PDF
References
[1.]
M.C. Arendrup, K. Fuursted, B. Gahrn-Hansen, H.C. Schonheyder, J.D. Knudsen, I.M. Jensen, et al.
Semi-national surveillance of fungemia in Denmark 2004–2006: increasing incidence of fungemia and numbers of isolates with reduced azole susceptibility.
Clin Microbiol Infect, 14 (2008), pp. 487-494
[2.]
P.G. Pappas, C.A. Kauffman, D. Andes, D.K. Benjamin Jr, T.F. Calandra, J.E. Edwards Jr, et al.
Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America.
Clin Infect Dis, 48 (2009), pp. 503-535
[3.]
Antimicrob Agents Chemother.
New antimicrobial agents approved by the U.S. Food and Drug Administration in 2003 and new indications for previously approved agents.
Antimicrob Agents Chemother, 48 (2004), pp. 1438-1439
[4.]
Antimicrob Agents Chemother.
New antimicrobial agents approved by the U.S. Food and Drug Administration in 2004 and new indications for previously approved agents.
Antimicrob Agents Chemother, 49 (2005), pp. 2151
[5.]
Antimicrob Agents Chemother.
New antimicrobial agents approved by the U.S. Food and Drug Administration in 2005 and new indications for previously approved agents.
Antimicrob Agents Chemother, 50 (2007), pp. 1912
[6.]
M.A. Pfaller, L. Boyken, R.J. Hollis, J. Kroeger, S.A. Messer, S. Tendolkar, et al.
Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp.
J Clin Microbiol, 48 (2010), pp. 52-56
[7.]
A. Espinel-Ingroff, E. Canton, J. Pemán.
Emerging resistance to azoles and echinocandins: clinical relevance and laboratory detection.
Current Fungal Infection Reports, 4 (2010), pp. 186-195
[8.]
A. Espinel-Ingroff.
In vitro antifungal activities of anidulafungin and micafungin licensed agents and the investigational triazole posaconazole as determined by NCCLS methods for 12,052 fungal pathogens: review of the literature.
Rev Iberoam Micol, 20 (2003), pp. 121-136
[9.]
S.A. Messer, D.J. Diekema, L. Boyken, S. Tendolkar, R.J. Hollis, M.A. Pfaller.
Activities of micafungin against 315 invasive clinical isolates of fluconazole resistant Candida spp.
J Clin Microbiol, 44 (2006), pp. 324-326
[10.]
L. Ostrosky-Zeichner, J.H. Rex, P.G. Pappas, R.J. Hamill, R.A. Larson, H.W. Horowitz, et al.
Antifungal susceptibilty survey of 2000 bloodstream Candida isolates in the United States.
Antimicrob Agents Chemother, 47 (2003), pp. 3149-3154
[11.]
J. Mora-Duarte, R. Betts, C. Rotsein, A.L. Colombo, L. Thompson-Moya, J. Smietana, et al.
Comparison of caspofungin and amphotericin B for invasive candidiasis.
N Engl J Med, 347 (2002), pp. 2020-2029
[12.]
E.R. Kuse, P. Chetchotisakd, C.A. Da Cunha, M. Ruhnke, C. Barrios, D. Raghunadhrao, et al.
Micafungin versus liposomal amphotericin B for candidaemia and invasive candidiasis: a phase III randomised double-blind trial.
Lancet, 369 (2007), pp. 1519-1527
[13.]
D.S. Krause, J. Reinhardt, J.A. Vazquez, A. Reboli, B.P. Goldstein, M. Wible, et al.
Phase 2, randomized, dose-ranging study evaluating the safety and efficacy of anidulafungin in invasive candidiasis and candidemia.
Antimicrob Agents Chemother, 48 (2004), pp. 2021-2024
[14.]
L. Ostrosky-Zeichner, D. Kontoyiannis, J. Raffalli, K.M. Mullane, J. Vazquez, E.J. Anaissie, et al.
International, open-label, noncomparative, clinical trial of micafungin alone and in combination for treatment of newly diagnosed and refractory candidemia.
Eur J Clin Microbiol Infect Dis, 24 (2005), pp. 654-661
[15.]
A.L. Colombo, A.l. Ngai, M. Bourque, S.K. Bradshaw, K.M. Strohmaier, E.F. Taylor, et al.
Caspofungin use in patients with invasive candidiasis caused common non-albicansCandida species: review of the caspofungin database.
Antimicrob Agents Chemother, 54 (2010), pp. 1864-1871
[16.]
A.C. Reboli, C. Rotstein, P.G. Pappas, S.W. Chapman, D.H. Kett, D. Kumar, et al.
Anidulafungin versus fluconazole for invasive candidiasis.
N Engl J Med, 356 (2007), pp. 2472-2482
[17.]
A. Espinel-Ingroff, E. Canton, E. Martin-Mazuelos, J. Pemán.
Pharmacotherapy of Candida infections with echinocandins.
Clin Med Therapeutics, 1 (2009), pp. 889-897
[18.]
A. Dalhoff, P.G. Ambrose, J.W. Mouton.
A long journey from minimum inhibitory concentration testing to clinically predictive breakpoints: deterministic and probabilistic approaches in deriving breakpoints.
Infection, 37 (2009), pp. 296-305
[19.]
A. Espinel-Ingroff.
Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991(L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts.
J Clin Microbiol, 36 (1998), pp. 2950-2956
[20.]
F.C. Odds, M. Motyl, R. Andrade, J. Bille, E. Canton, M. Cuenca-Estrella, et al.
Interlaboratory comparison of results of susceptibility testing with caspofungin against Candida and Aspergillus species.
J Clin Microbiol, 42 (2004), pp. 3475-3482
[21.]
Clinical and Laboratory Standards Institute.
Reference method for broth dilution antifungal susceptibility testing of yeasts Approved standard.
3rd ed., Clinical and Laboratory Standards, (2008),
[22.]
Clinical and Laboratory Standards Institute.
Reference method for broth dilution antifungal susceptibility testing of yeasts. Informational supplement.
3rd ed., Clinical and Laboratory Standards, (2008),
[23.]
Clinical and Laboratory Standards Institute.
Method for antifungal disk diffusion susceptibility testing of yeasts. Approved standard.
2nd ed., Clinical and Laboratory Standards, (2009),
[24.]
Clinical and Laboratory Standards Institute.
Zone diameter interpretive standards, corresponding minimal inhibitory concentration (MIC) interpretive breakpoints, and quality control limits for antifungal disk diffusion susceptibility testing of yeasts. Informational supplement.
3rd ed., Clinical and Laboratory Standards, (2009),
[25.]
M.A. Pfaller, D.J. Diekema, D. Andes, M.C. Arendrup, S.D. Brown, M. Motyl, et al.
Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria.
Drug Resist Updat, (In press 2010),
[26.]
M.C. Arendrup, G. García-Effron, C. Lass-Florl, A. Gómez Lopes, J.L. Rodríguez-Tudela, M. Cuenca-Estrella, et al.
Echinocandins susceptibility testing of Candida species: comparison of EUCAST Edef 7.1, CLSI M27-A3, Etest, disk diffusion and agar dilution methods with RPMI and isoSensitest media.
Antimicrob Agents Chemother, 52 (2010), pp. 426-439
[27.]
M.D. Jacobsen, J.A. Whyte, F.C. Odds.
Candidaalbicans and Candida dubliniensis respond differently to echinocandin antifungal agents in vitro.
Antimicrob Agents Chemother, 51 (2007), pp. 1882-1884
[28.]
C.D. Pfeiffer, G. García-Effron, A.K. Zaas, J.R. Perfect, D.S. Perlin, B.D. Alexander.
Breakthrough invasive candidiasis in patients on micafungin.
J Clin Microbiol, 48 (2010), pp. 2373-2380
[29.]
G. García-Effron, S. Park, D.S. Perlin.
Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints.
Antimicrob Agents Chemother, 53 (2009), pp. 112-122
[30.]
G. García-Effron, S. Lee, S. Park, J.D. Cleary, D.S. Perlin.
Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-ß-D-glucan synthase: implication for the existing susceptibility breakpoint.
Antimicrob Agents Chemother, 53 (2009), pp. 3690-3699
[31.]
M.-T. Baixench, N. Aoun, M. Desnos-Ollivier, D. García-Hermoso, S. Bretagne, S. Ramires, et al.
Acquired resistance to echinocandins in Candida albicans: case report and review.
J Antimicrob Chemother, 59 (2007), pp. 1076-1083
[32.]
M. Desnos-Ollivier, S. Bretagne, D. Raoux, D. Hoinard, F. Dromer, E. Dannaoui.
Mutations in the fks1 gene in Candida albicans, C. tropicalis and C. krusei correlate with elevated caspofungin MICs uncovered in AM3 medium using the method of the European Committee on Antibiotic Susceptibility Testing.
Antimicrob Agents Chemother, 52 (2008), pp. 3092-3098
[33.]
J.D. Cleary, G. García-Effron, S.W. Chapman, D. Perlin.
Reduced Candida glabrata susceptibility secondary to an FSK1 mutation developed during candidemia treatment.
Antimicrob Agents Chemother, 52 (2008), pp. 2263-2265
[34.]
G.R. Thompson, N.P. Wiederhold, A.C. Vallor, N.C. Villareal, J.S. Lewis, T.F. Patterson.
Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection.
Antimicrob Agents Chemother, 52 (2008), pp. 3783-3785
[35.]
N.P. Wiederhold, L.K. Najvar, R. Bocanegra, D. Molina, M. Olivo, J.R. Graybill.
In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera.
Antimicrob Agents Chemother, 51 (2007), pp. 1616-1620
[36.]
M. Castanheira, L.N. Woosley, D.J. Diekema, S.A. Messer, R.N. Jones, M.A. Pfaller.
Low prevalence of fks1 hotspot 1 mutations in a worldwide collection of Candida spp.
Antimicrob Agents Chemother, 54 (2010), pp. 2655-2659
[37.]
J.N. Kahn, G. García-Effron, M.J. Hsu, S. Park, K.A. Marr, D.S. Perlin.
Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase.
Antimicrob Agents Chemother, 51 (2007), pp. 1876-1878
[38.]
G. García-Effron, D.J. Chua, R. Thomada, J. Dipersio, D.S. Perlin, M. Ghannoum, et al.
Novel FKs mutations associated with echinocandin resistance.
Antimicrob Agents Chemother, 54 (2010), pp. 2225-2227
[39.]
G. García-Effron, D.P. Kontoyiannis, R.E. Lewis, D.S. Perlin.
Caspofungin resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies.
Antimicrob Agents Chemother, 52 (2008), pp. 4181-4183
[40.]
G. García-Effron, S.K. Katiyar, S. Park, Edlin T.D., D.S. Perlin.
A naturally ocurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility.
Antimicrob Agents Chemother, 52 (2008), pp. 2305-2312
[41.]
E. Cantón, A. Espinel-Ingroff, J. Pemán, L. Del Castillos.
In vitro fungicidal activities of echinocandins against Candida metapsilosi, C. orthopsilosis, C. parapsilosis by time kill studies.
Antimicrob Agents Chemother, 54 (2010), pp. 2194-2197
[42.]
S.R. Lockart, S.A. Messer, M.A. Pfaller, D.J. Diekema.
Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis.
J Clin Microbiol, 46 (2008), pp. 2659-2664
[43.]
P. Paderu, G. García-Effron, S. Balashov, G. Delmas, S. Park, D.S. Perlin.
Serum differentially alters the antifungal properties of echinocandin drugs.
Antimicrob Agents Chemother, 51 (2007), pp. 2253-2256
[44.]
M.A. Ghannoum, A. Chen, M. Buhari, J. Chandra, P.K. Mukherjee, D. Baxa, et al.
Differential in vitro activity of andulafungin, caspofungin and micafungin against Candida parapsilosis isolates recovered from a burn unit.
Clin Infect Dis, 15 (2009), pp. 274-279
[45.]
D. Andes, D.J. Diekema, M.A. Pfaller, J. Bohrmuller, K. Marchillo, A. Lepak.
In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species.
Antimicrob Agents Chemother, 54 (2010), pp. 2497-2506
[46.]
L. Maródi, J.R. Forehand, R.B. Johnston Jr..
Mechanisms of host defence against Candida species. II. Biochemical basis for the killing of Candida by mononuclear phagocytes.
J Immunol, 146 (1991), pp. 2790-2794
[47.]
E. Cantón, J. Pemán, A. Valentín, A. Espinel-Ingroff, M. Gobernado.
In vitro activities of echinocandins against Candida krusei determined by three methods: MIC and minimal fungicidal concentration measurements and time-kill studies.
Antimicrob Agents Chemother, 53 (2009), pp. 3108-3111
[48.]
E. Ernst, E. Roling, C. Petzold, D. Keele, M. Klepser.
In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies.
Antimicrob Agents Chemother, 46 (2002), pp. 3846-3853
[49.]
E. Cantón, J. Pemán, M. Sastre, M. Romero, A. Espinel-Ingroff.
Killing kinetics of caspofungin, micafungin,and amphotericin B against Candida guilliermondii.
Antimicrob Agents Chemother, 50 (2006), pp. 2829-2832
[50.]
F. Barchiesi, E. Spreghini, S. Tomassetti, A. Della Vittoria, D. Arzeni, E. Manso, et al.
Effects of caspofungin against Candida guilliermondii and Candida parapsilosis.
Antimicrob Agents Chemother, 50 (2006), pp. 2719-2727
[51.]
J. Cota, M. Carden, J.R. Graybill, L.K. Najvar, D.S. Burgess, N.P. Wiederhold.
In vitro pharmacodynamics of anidulafungin and caspofungin against Candida glabrata isolates, including strains with decreased caspofungin susceptibility. Antimicrob.
Agents Chemother, 50 (2006), pp. 3926-3928
[52.]
E. Cantón, J. Pemán, A. Valentín, M. Bosch, A. Espinel-Ingroff.
Pharmacodynamics of anidulafungin against six Candida species.
J Chemother, 19 (2007), pp. 42
[53.]
M. Gobernado, E. Cantón.
Aniduladungina.
Rev Esp Quimioterap, 21 (2008), pp. 99-114
[54.]
I. Varga, G. Sóczo, G. Kardos, L. Majoros.
Time-kill studies investigating the killing activity of caspofungin against Candida dubliniensis: comparing RPMI-1640 and antibiotic medium 3.
J Antimicrob Chemother, 62 (2008), pp. 149-152
Copyright © 2011. Elsevier España S.L.. All rights reserved
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

es en pt
Política de cookies Cookies policy Política de cookies
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here. Utilizamos cookies próprios e de terceiros para melhorar nossos serviços e mostrar publicidade relacionada às suas preferências, analisando seus hábitos de navegação. Se continuar a navegar, consideramos que aceita o seu uso. Você pode alterar a configuração ou obter mais informações aqui.