metricas
covid
Annals of Hepatology NON-INVASIVE ASSESSMENT OF STEATOHEPATITIS AND LIVER FIBROSIS IN THE POPULATION ...
Journal Information
Vol. 30. Issue S2.
Abstracts of the 2025 Annual Meeting of the ALEH
(September 2025)
Vol. 30. Issue S2.
Abstracts of the 2025 Annual Meeting of the ALEH
(September 2025)
#71
Full text access
NON-INVASIVE ASSESSMENT OF STEATOHEPATITIS AND LIVER FIBROSIS IN THE POPULATION AT RISK FOR METABOLIC STEATOTIC LIVER DISEASE
Visits
129
Laís Siqueira Maia1, Juliana Rodrigues Caldas1, Rodrigo Nogueira Alonso1, Juliana de Albuquerque Magella Mussnich1, Maria Paula Silva Bernardes1, João Marcello Neto de Araújo2, Luis Guillermo Coca Velarde1, Maria Auxiliadora Nogueira Saad1, Débora Vieira Soares1, Priscila Pollo-Flores1
1 Universidade Federal Fluminense, Brasil.
2 Universidade Federal do Rio de Janeiro, Brasil.
This item has received
Article information
Abstract
Full Text
Download PDF
Statistics
Tables (1)
Tables
Special issue
This article is part of special issue:
Vol. 30. Issue S2

Abstracts of the 2025 Annual Meeting of the ALEH

More info
Introduction and Objectives

The overall global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is 30%, with a higher prevalence in Latin America (44,4%). Metabolic dysfunction-associated steatohepatitis (MASH) is a spectrum of MASLD that can progress to advanced fibrosis, cirrhosis, hepatic decompensation and hepatocellular carcinoma. Non-invasive tests (NITs) can help identify and monitor the progression of MASH, as well as predict the risk of liver-related outcomes.

To evaluate the association between steatohepatitis, liver fibrosis and progression predictors using non-invasive tests in the population at risk for MASLD.

Materials and Methods

A prospective observational study based on the analysis of cross-sectional data from adults in a tertiary hospital who provided informed consent. Inclusion criteria were age between 18 and 75 years and the presence of type 2 diabetes, obesity or metabolic syndrome. The NITs used were FIB 4 index, ultrassonography Fatty Liver Index (FLI), transient elastography and shear wave elastography. Data were analyzed using R and were submitted to the non-parametric Mann-Whitney or Wilcoxon tests. A significant level of 5% was adopted.

Results

This study included 131 patients. Of these, 81 (61.8%) had steatohepatitis (FLI≥ 4), 35 (26.7%) significant fibrosis (F≥ 2) and 17 (12.9%) advanced fibrosis (F≥ 3). Gamma-glutamil transferase (GGT) was the only serum biomarker with a statistically significant correlation with both steatohepatitis (p = 0.01582) and significant fibrosis (p = 0.0217). Data are described in table1.

Conclusions

GGT was significantly associated with the presence of steatohepatitis and significant fibrosis, suggesting that GGT may serve as an additional marker to alert clinicians to the presence of MASH and fibrosis.

Full Text

Conflict of interest: None

  Total Population  No Fibrosis  Fibrosis  p value 
Total  131  96  35 
Baseline characteristics of the participants         
Age, years (median/IQR)  64 (57 -69.5)  63 (56.7 – 69)  66 (58 – 71)  0.1159 
Sex, female (N - %)  108 (82.4)  77 (80.2)  31 (88.5)  0.3932 
Alcohol consumption (N - %)        0.0546 
Abstaining  79 (60.3)  53 (55.2)  26 (74.2)   
< 10 g/day  36 (27.4)  29 (30.2)  7 (20)   
> 10 g/day  9 (6.8)  9 (9.3)   
Anthropometric measurements         
BMI (median - kg/m231.5  31  33.3  0.1705 
Waist circumference (median - cm)  103.25  102  110  0.1234 
Hip circumference (median - cm)  105.5  104.5  108.5  0.1737 
Waist-to-height ratio  65.14  64.8  66.9  0.185 
Laboratory and imaging-based parameters (median/IQR)         
AST (U/L)  21 (18 – 28)  20 (17 – 27)  26 (20 – 35)  0.002392 
ALT (U/L)  22 (16 – 29.5)  21 (15 – 27.2)  28 (20 – 42)  0.002341 
Platelets (103/mm3239 (196.5 – 281)  245 (199.7 – 280.)  221 (174 – 292.5)  0.3625 
GGT (U/L)  33 (24 – 55.2)  32 (24 – 43)  53 (27 – 72)  0.0217 
Ferritin (ng/mL)  129.87 (71.5 – 255)  139 (78 – 277.4)  97 (56.1 – 156.2)  0.06386 
CRP (mg/dL)  0.43 (0.24 – 0.83)  0.43 (0.24 – 0.73)  0.45 (0.28 – 0.87)  0.6687 
Fibroscan (kPa)  5.5 (4.7 – 6.8)  5.1 (4.5 – 5.9)  9.1 (7.8 – 13.2)  < 0.001 
2D-SWE (kPa)  5.4 (4.4 – 6.8)  5 (4.1 – 5.7)  7.4 (6.6 – 10.1)  < 0.001 
US-FLI (kPa)  5.5 (4 – 7)  5 (3 – 7)  6 (4.2 – 7)  0.1274 
FIB-4  1.19 (0.87 – 1.69)  1.17 (0.86 – 1.58)  1.34 (0.94 – 2)  0.03868 
FIB-4 Classification (N - %)        0.05654 
Low FIB-4  73 (55.7)  57 (59.3)  16 (45.7)   
Indeterminate FIB-4  45 (34.3)  33 (34.3)  12 (34.2)   
High FIB-4  13 (9.9)  6 (6.2)  7 (20)   

Download PDF
Article options
Tools