metricas
covid
Buscar en
Cirugía Española (English Edition)
Toda la web
Inicio Cirugía Española (English Edition) Development and validation of a predictive algorithm for the total length of the...
Journal Information
Visits
8
Vol. 103. Issue 7.
(July 2025)
Original article
Development and validation of a predictive algorithm for the total length of the small intestine using artificial intelligence techniques for application in bariatric surgery
Desarrollo y validación de algoritmo predictivo de la longitud total del intestino delgado con técnicas de inteligencia artificial para su aplicación en cirugía bariátrica
Visits
8
José Fernando Trebollea,
, Jorge Solano Murillob, Jesús Lobo Poyoc, Carmen Pellicer Lostaoc, Mónica Valero Sabatera, Gabriel Tirado Anglésd, Irene Cantarero Carmonae, María José Luesma Bartoloméf
a Servicio de Cirugía General y de Aparato Digestivo, Hospital Royo Villanova, Zaragoza, Spain
b Unidad de Cirugía Laparoscópica Avanzada, Hospital Quironsalud, Zaragoza, Spain
c CESTE, Escuela Internacional de Negocios, Zaragoza, Spain
d Unidad de Cuidados Intensivos, Hospital Royo Villanova, Zaragoza, Spain
e Departamento de Ciencias Morfológicas, Universidad de Córdoba, Córdoba, Spain
f Departamento de Anatomía e Histología Humanas, Universidad de Zaragoza, Zaragoza, Spain
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (6)
Show moreShow less
Abstract
Objective

To develop a predictive model of the total length of the small intestine to be applied in bariatric surgery, allowing for the individualization of surgery for each patient.

Methods

Two Excel tables were generated from a Filemaker file. Python was used through a Notebook format in Google Collaborator. The methodology included data transformation and scaling (MinMaxScaler), clustering (unsupervised machine learning with KMeans), data interpolation (oversampling machine learning technique SMOTE), modeling (PyCaret model - XGBoost), and validation.

Results

The study sample included 1090 cases. Three clusters were obtained to categorize the dataset: low, medium, and high length. The algorithm detected patients in cluster c0 with 62% accuracy and 74% sensitivity, in cluster c1 with 63% accuracy and 50% sensitivity, and in cluster c2 with 86% accuracy and 87% sensitivity. Validation was conducted with a new sample of 54 cases, showing results of 50% accuracy and 42% sensitivity for cluster c0, 58% accuracy and 61% sensitivity for cluster c1, and 30% accuracy and 43% sensitivity for cluster c2.

Conclusions

The development of a predictive algorithm for estimating the total length of the small intestine using clustering and machine learning techniques, along with XGBoost classification, is feasible, applicable, and potentially improvable with more data, both in terms of patient numbers and variables to consider.

Keywords:
Bariatric surgery
Artificial intelligence
Predictive model
Machine learning
Clustering
Resumen
Objetivo

Desarrollar un modelo predictivo de la longitud total del intestino delgado para aplicar en cirugía bariátrica que permita individualizar la cirugía a cada paciente.

Material y Método: Dos tablas Excel a partir de un archivo Filemaker. Phyton a través de un formato Notebook en Google Colaboratory. La metodología ha incluido transformación y escalado de datos (MinMaxScaler), clustering (machine learning no supervisado KMeans), interpolación de datos (machine learning sobremuestreo SMOTE), modelización (modelo PyCaret - XGBoost), y validación.

Resultados

Muestra de 1090 casos. Se han obtenido 3 clusters en los que incluir el conjunto de datos: longitud baja, media, y alta. El algoritmo detecta pacientes del cluster c0 con una precisión 62 % y sensibilidad 74 %, del cluster c1 con una precisión 63 % y sensibilidad del 50 %, y del cluster c2 con una precisión 86 % y sensibilidad 87 %. La validación se ha realizado a partir de una muestra de 54 casos nuevos, mostrando unos resultados de precisión 50 % y sensibilidad 42 % para el cluster c0, de precisión 58 % y sensibilidad 61 % para el cluster c1, y de precisión 30 % y sensibilidad 43 % para el cluster c2.

Conclusiones

El desarrollo de un algoritmo predictivo para conocer la longitud total del intestino delgado a través de técnicas de clustering y machine learning, y clasificación XGBoost es factible, aplicable, y potencialmente mejorable si se cuenta con más datos tanto en número de pacientes, como en variables a considerar.

Palabras clave:
Cirugía bariátrica
Inteligencia artificial
Modelo predictivo
Machine learning
Clustering
Graphical abstract

Article

These are the options to access the full texts of the publication Cirugía Española (English Edition)
Subscriber
Subscriber

If you already have your login data, please click here .

If you have forgotten your password you can you can recover it by clicking here and selecting the option “I have forgotten my password”
Subscribe
Subscribe to

Cirugía Española (English Edition)

Purchase
Purchase article

Purchasing article the PDF version will be downloaded

Purchase now
Contact
Phone for subscriptions and reporting of errors
From Monday to Friday from 9 a.m. to 6 p.m. (GMT + 1) except for the months of July and August which will be from 9 a.m. to 3 p.m.
Calls from Spain
932 415 960
Calls from outside Spain
+34 932 415 960
E-mail
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos