Regístrese
Buscar en
Boletín de la Sociedad Española de Cerámica y Vidrio
Toda la web
Inicio Boletín de la Sociedad Española de Cerámica y Vidrio Cálculo simplificado de vidrio laminado: determinación de desplazamientos en v...
Journal Information
Vol. 58. Issue 5.
Pages 226-236 (September - October 2019)
Share
Share
Download PDF
More article options
Visits
47
Vol. 58. Issue 5.
Pages 226-236 (September - October 2019)
DOI: 10.1016/j.bsecv.2019.03.003
Open Access
Cálculo simplificado de vidrio laminado: determinación de desplazamientos en vigas y placas ante cargas estáticas utilizando modelos monolíticos
Simplified calculation of laminated glass: Displacements determination in beams and plates under static loadings by using monolithic models
Visits
47
Ismael García García
Corresponding author
garciaismael@uniovi.es

Autor para correspondencia.
, Manuel López-Aenlle, Pelayo Fernández Fernández
Departamento de Construcción e Ingeniería de Fabricación, Universidad de Oviedo, Campus de Gijón, Gijón, Asturias, España
This item has received
47
Visits

Under a Creative Commons license
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (12)
Show moreShow less
Tables (3)
Tabla 1. Coeficientes para el PVB
Tabla 2. Ecuaciones para el cálculo de vigas formadas por 2 y 3 capas de vidrio
Tabla 3. Ecuaciones para el cálculo de placas rectangulares formadas por 2 y 3 capas de vidrio
Show moreShow less
Resumen

En el cálculo de vigas y placas de vidrio laminado el vidrio se suele considerar como un material con propiedades elástico-lineales, mientras que los materiales poliméricos que conforman el laminado presentan un comportamiento viscoelástico. Como consecuencia, el comportamiento mecánico del vidrio laminado depende del tiempo y de la temperatura. Por otro lado, las mallas de elementos finitos utilizadas para la modelización numérica de estos elementos suelen ser muy densas debido a que los espesores de las capas de vidrio —y sobre todo los de las capas poliméricas— son mucho más pequeños que las otras dimensiones del elemento (ancho y largo). Por esta razón, el cálculo numérico de estos elementos suele ser un alto coste computacional. En los últimos años se ha propuesto el concepto de rigidez efectiva (alternativamente espesor efectivo y módulo de elasticidad efectivo) para el cálculo simplificado de vigas y placas de vidrio laminado. En este trabajo se propone una metodología para calcular la deformada de vigas y placas de vidrio laminado sometidas a cargas estáticas, utilizando un modelo monolítico elástico-lineal (que puede ser analítico o numérico) junto con las ecuaciones de la rigidez efectiva del elemento laminado. Las ecuaciones presentadas en este trabajo se validan mediante ensayos en vigas simplemente apoyadas y placas apoyadas en las cuatro esquinas, siendo el error máximo obtenido del 10%.

Palabras clave:
Vidrio laminado
Viscoelasticidad
Espesor efectivo
Vigas
Placas
Abstract

In the calculation of laminated glass elements, glass layers are commonly considered as linear-elastic whereas the polymeric interlayers present viscoelastic behavior. Consequently, the mechanical behavior of laminated glass elements depends on time and temperature. Many finite elements are needed to calculate these elements because the thickness of the glass layers (and above all that of polymeric interlayers) are much smaller than the other two dimensions of the element (with and length). For this reason, the calculation of these elements is very high time consuming. Recently, several authors have proposed the effective stiffness concept (alternatively effective thickness or effective Young's modulus) for the simplified calculation of laminated glass elements. In this work, a methodology is proposed to predict the deflection of laminated beams and plates under static loadings using a linear elastic monolithic model (analytical or numerical) and the equations of the effective stiffness for the laminated glass. The equations proposed in this work have been validated by experimental tests carried out in simply-supported beams and in a plate supported at the four corners, the maximum error being less than 10%.

Keywords:
Laminated glass
Viscoelasticity
Effective thickness
Beams
Plates
Nomenclatura
a

Largo de la placa

b

Ancho de la viga o placa

D

Rigidez a flexión en placas

di

Distancia del plano medio de la capa al plano medio de la viga completa

E

Módulo de elasticidad del vidrio

Eeff t,T

Módulo de elasticidad efectivo

ei

Coeficiente de módulo de la serie de Prony

Et t,T

Módulo de relajación de la capa viscoelástica

Et0

Módulo de elasticidad inicial de la capa viscoelástica

g(x)

Función de forma en vigas (modelo de Galuppi y Royer-Carfagni)

g(x,y)

Función de forma en placas (modelo de Galuppi y Royer-Carfagni)

Gtt,T

Módulo de relajación a cortante de la capa viscoelástica

Gt0

Módulo de cortadura inicial de la capa viscoelástica

H1

Espesor de la capa 1 de vidrio

H2

Espesor de la capa 2 de vidrio

H3

Espesor de la capa 3 de vidrio

I

Momento de inercia

L

Longitud de la viga

μ

Coeficiente de Poisson del vidrio

ψB

En vigas, coeficiente que depende de la longitud, del tipo de carga y las condiciones de apoyo

ψP

En placas, coeficiente que depende de la geometría, del tipo de carga y las condiciones de apoyo

t

Tiempo

t

Espesor de la capa polimérica

T

Temperatura

τi

Coeficiente de tiempo en la serie de Prony

T0

Temperatura de referencia

w

Desplazamiento

wL

Desplazamiento del modelo laminado

wMON

Desplazamiento del modelo equivalente monolítico

Full Text

Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 43733416 bytes) in /var/www/html/includes_ws_v2/librerias/utilidades.php on line 359
ERROR [1] Allowed memory size of 134217728 bytes exhausted (tried to allocate 43733416 bytes) (includes_ws_v2/librerias/utilidades.php[359])