covid
Buscar en
Revista Médica del Hospital General de México
Toda la web
Inicio Revista Médica del Hospital General de México Trends in cancer mortality in Mexico: 1990–2012
Información de la revista
Vol. 78. Núm. 2.
Páginas 85-94 (abril - junio 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4664
Vol. 78. Núm. 2.
Páginas 85-94 (abril - junio 2015)
Original Article
Open Access
Trends in cancer mortality in Mexico: 1990–2012
Tendencia de la mortalidad por cáncer en México: 1990-2012
Visitas
4664
Pedro Rizo-Ríosa, Aurora González-Riverab,
Autor para correspondencia
agonzalezr48@gmail.com

Corresponding author at: Av. Insurgentes Sur 3700-C Insurgentes Cuicuilco, C.P. 04530, Delegación Coyoacán, México, D.F., Mexico.
, Felipe Sánchez-Cervantesc, Pedro Murguía-Martínezc
a Instituto Nacional de Cancerología, México, D.F., Mexico
b Instituto Nacional de Pediatría, México, D.F., Mexico
c Dirección General de Epidemiología, México, D.F., Mexico
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (5)
Mostrar másMostrar menos
Tablas (2)
Table 1. Proportional mortality rate due to malignant tumours, Mexico 1990–2012.
Table 2. Mortality due to malignant tumours, Mexico 1990–2012.
Mostrar másMostrar menos
Abstract
Introduction

Cancer is the leading cause of death worldwide, with 8.2 million deaths in 2012: 4.7 million (57%) male deaths and 3.5 million (43%) female deaths. In Mexico, it ranks second as a cause of death (2007).

Objective

To describe the most common types of cancers, as well as their trends over the 1990–2012 period.

Methods

Mortality rates were standardised (ASMR) by age and gender. The annual percent change (APC) was calculated using Poisson regression model and by means of analysing time trends and variability on a regional level. The Years of Potential Life Lost (YPLL) were calculated.

Results

ASMR increased from 9.7 to 12.2, from 1990 to 2012. In men, the most common types of cancer were: prostate, lung and stomach (ASMR 10.4, 8.0 and 5.8, respectively); APC was of 2.9, −0.6 and −0.1, and in women: breast (ASMR 9.8 and APC 2.7), cervical (ASMR between 12.6 and 6.6 and APC −2.0) and liver (ASMR 4.9, APC 1.3). The highest ASMR was observed in the North of Mexico, mainly for lung, prostate, breast, colon, ovarian and pancreatic cancer.

Discussion

In Mexico, cancer is a major public health problem. Although mortality is an indicator of the access and effectiveness of medical care, it is necessary to create population-based cancer registries to have basic information in the planning and quality assessment of medical services such as prevention, early diagnosis and treatment, as well as to develop strategies to allocate resources and necessities to fulfil the population's demand for medical assistance.

Keywords:
Cancer
Mortality
Epidemiology
Resumen
Introducción

El cáncer es la primera causa de muerte a nivel mundial, con 8.2 millones de defunciones en el 2012: 4.7 millones (57%) en hombres y 3.5 millones (43%) en mujeres. En México, el cáncer ocupa el segundo lugar como causa de muerte (2007).

Objetivo

Describirlas principales causas de mortalidad por cáncer y su tendencia durante el periodo 1990-2012.

Métodos

Se estandarizaron las tasas de mortalidad (ASMR)por edad y sexo. Analizandosu tendencia temporal y variabilidad regional, se evaluóel porcentaje anual de cambio (APC) mediante el modelo de regresión log-lineal de Poisson. Se calculó el índice de años de vida potencialmente perdidos (IAVPP).

Resultados

LaASMRincrementó de 9.7 a 12.2, de 1990 al 20012. Los tipos decáncermás frecuentes en el hombre fueron próstata, pulmón y estómago (ASMR de 10.4, 8.0 y 5.8 respectivamente); el APCfue de 2.9, -0.6, y -0.1, y en la mujer, el de mama (ASMRde 9.8 y APC de 2.7), el cervicouterino (ASMR de 12.6 a 6.6 y APC de -2.0) y el de hígado (ASMR de 4.9, APC 1.3). En el Norte del país se observaron mayores ASMRprincipalmente para cáncer de pulmón, próstata, mama, colon, ovario y páncreas.

Discusión

En México, el cáncer es un importante problema de salud pública. Aunque la mortalidad es un indicador del acceso y eficacia de la atención médica, es necesaria la creación de los registros de cáncer de base poblacional, para contar con información básica en la planificación y evaluación de la calidad de los servicios médicos, tales como la prevención, diagnóstico y tratamiento precoz, así como el desarrollo de estrategias para la distribución de los recursos y necesidades para satisfacer la demanda de atención médica de la población.

Palabras clave:
Cáncer
Mortalidad
Epidemiología
Texto completo
Introduction

Since last century, cancer has been considered a common disease that became a major public health problem on a global scale.1 In addition to causing a high number of deaths each year, it creates huge economic, social and emotional burdens. Data from the World Health Organization (WHO) affirms cancer is the leading cause of death across the world and the second one, after cardiovascular diseases, in underdeveloped countries (Africa, Asia, Central America and South America) where it accounts for more than 70% of registered deaths. This is associated to strategy deficiencies for the prevention, diagnosis and treatment2 of the disease.3,4 According GLOBOCAN data from 2012, there were 14.1 million new cancer cases across the world and 8.2 million deaths, which represented 13% of the total of deaths. Projections indicate that the number of deaths caused by cancer in America will rise from 1.3 million to 2.1 million in 2030. Likewise, the number of new cases is expected to rise by 67% in Latin America and the Caribbean (1.8 million per year); this estimates are higher than the ones for North America (41%).5,6

In the last report, “Cancer in the Americas: Country profiles 2013”, carried out by the Pan American Health Organization (PAHO) and the World Health Organization (WHO), it is reported that mortality caused by all types of cancer is decreasing in at least nine countries of America (Argentina, Brazil, Canada, Chile, United States, Mexico, Nicaragua, Paraguay and Venezuela); in the rest, the trends in mortality due to some types of cancer is still on the rise.7

Most deaths in Latin America are caused by lung, prostate, breast and colorectal cancer. There are some variations evident, depending on the affected subregion. For instance, in North America lung cancer is the main cause of death in women, whereas in Central America one of the types of cancer with the highest mortality rates is cervical cancer (which caused over 35,600 deaths in 2012); in the Caribbean, the incidence and mortality rates due to prostate cancer are significantly higher than in other subregions; stomach cancer is the fifth cause of death for both genders in Latin American and the Caribbean countries, whereas in North America it is not even listed within the first 15 causes of death.5,6

In Mexico, the historical behaviour of cancer mortality has had a rising trend. Since 1999, the numbers have already been considered alarming, given that there were 53.6 deaths reported for every 100,000 inhabitants. This number rose to 55.2 in 2001, almost triple what was reported in 1931 (19.9 deaths every 100,000 inhabitants). For this year, cancer was already placed as the second leading cause of death and it comprised 11.8% of the total of deaths.8,9

According to the data published by the National Institute of Statistics and Geography (Instituto Nacional de Estadistica y Geografia, INEGI) in 2007, cancer was still the second leading cause of death in the country (some reports placed it as third cause), after diabetes mellitus and before heart ischaemic diseases.10 Cancer was the leading cause of death in women between the age of 30 and 59, but it was second in women between the age of 15 and 29. It was the third cause of death in men over the age of 30.11

According to the data published in the Histopatologic Register of Malignant Neoplasms (Registro Histopatologico de Neoplasias Malignas, RHNM) in 2011, cancer incidence nationwide maintained a rising trend among deaths from 1980 to 1989 (41.8 to 51.1 per 105), with a fall in 1990 (49.0 per 105); its rise soared from 1994 to 2008, with rates that went from 51.4 to 66.6 per 105, causing 71,074 deaths.12

In 2012, Aldaco-Sarvide et al.13 reported that a total of 592,018 people passed away in the year 2010. Out of these deaths, 74,685 were caused by cancer. This corresponds to 12.6% of the total of deaths.

Recently, according to the 2013 PAHO/WHO report, cancer mortality rates in Mexico decreased during the years 2009 and 2010.4 33,263 male deaths and 34,745 female deaths were registered, with distinct rising trends within the population over the age of 30 and elevated death rates for the majority of the types of cancer.

Although the problem cancer represents on a global scale can be seen in a general way through international registries, data from Mexico is paltry and access to be able to determine its real impact on health more precisely is difficult. For this reason, and given the need to have more information available that supports the understanding of the evolution and state of cancer in our country, this study has been carried out. It describes the trend and epidemiologic behaviour of the ten leading causes of death by cancer within the Mexican population from 1990 to 2012.

Methods

Data on deaths due to malignant tumours was gathered from official databases from 1990 to 2012, which were obtained from death certificates validated by the National Institute of Statistics and Geography (INEGI)14 and published by the National Health Information System (NHIS).15 The 2010–2050 projections for the population of Mexico were also taken into account for this period, which were published by the National Population Council (Consejo Nacional de Poblacion, CONAPO)16 and the International Classification of Diseases was also used (CIE-10).17 A descriptive, univariate analysis was carried out by gender, age, state and type of cancer as cause of mortality, and a bivariate analysis to compare mortality rates by gender, age group and state. The national annual mortality rate was calculated from 1990 to 2012, as well as the global cancer mortality rate for the same period. The mortality ratio between men and women was calculated. The evolution of mortality was obtained by calculating the ratio between rates; subsequently, the standardisation of rates was performed by age (ASMR) for the ten leading causes of death by cancer by year and by gender, via the direct method18 and Doll et al. population, modified by Segui.19 All mortality rates were calculated by 100,000 inhabitants. The evolution of cancer mortality over time and the interstate fluctuation was expressed as the annual percentage change (APC) using the Poisson regression model. To determine the magnitude of the leading causes of death due to cancer by state for the study period, the ASMR was classified into levels, very high, high, medium and low according to the quartile method. The results are provided with their confidence intervals (CI) to 95%. To make comparisons between states and to assess premature mortality due to cancer, the Years of Potential Life Lost (YPLL) was calculated.20,21 Microsoft Access 2003 and INTERCOOLED STATA 12 statistical packages for Windows were used for the calculations.

Results

During the study period, out of 10,954,247 deaths registered nationwide, 1,307,494 (11.9%) were caused by some type of cancer. As shown in Table 1, deaths caused by cancer rose in absolute numbers from 41,168 (9.7%) in 1990 to 73,240 (12.2%) in 2012.

Table 1.

Proportional mortality rate due to malignant tumours, Mexico 1990–2012.

Year  Total deaths  Deaths due to malignant tumours  PMRa 
1990  422,803  41,168  9.7 
1991  411,131  41,985  10.2 
1992  409,814  43,692  10.7 
1993  416,335  44,951  10.8 
1994  419,074  46,423  11.1 
1995  430,278  48,222  11.2 
1996  436,321  49,916  11.4 
1997  440,437  51,254  11.6 
1998  444,665  52,670  11.8 
1999  443,950  53,662  12.1 
2000  437,667  54,996  12.6 
2001  443,127  56,201  12.7 
2002  459,687  58,599  12.7 
2003  472,140  60,046  12.7 
2004  473,417  61,248  12.9 
2005  495,240  63,128  12.7 
2006  494,471  63,888  12.9 
2007  514,420  65,112  12.7 
2008  539,530  67,049  12.4 
2009  564,673  68,454  12.1 
2010  592,020  70,240  11.9 
2011  590,693  71,350  12.1 
2012  602,354  73,240  12.2 
Total  10,954,247  1,307,494  11.9 
a

Proportional mortality rate.

Source: Based on deaths 1990–2012, Information in Health System (SINAIS). Health Secretary, Mexico.

With respect to mortality due to cancer and age (grouped into five-year periods), in the year 2012 there was a rising trend as people got older, which became more evident for people over the age of 40. When comparing the risk of death between men and women by age group, this was higher for men in early stages of life (under the age of 30) and over the age of 65. Conversely, the risk of death for women was higher between the ages of 30 and 64 (Fig. 1).

Figure 1.

Mortality due to malignant tumours, Mexico 2012. *Rate per 105.

(0.42MB).
Source: Based on deaths 2012. National System of Information in Health (SINAIS). Health Secretary. Mexico. Population estimations; National Population Consensus (CONAPO), Mexico 2012.

When analysing the leading causes of death by gender, there was a significant rise in mortality rates within the male population over the age of 60 and within the female population over the age of 40 (Fig. 2).

Figure 2.

Malignant tumour mortality by age and gender, Mexico 2012. *Rate per 105.

(0.35MB).
Source: Deaths base 2012. National System of Information in Health (SINAIS). Health Secretary, Mexico. Population estimations; National Population Consensus (CONAPO), Mexico 2012.

In the comparative analysis (1990 vs 2012) the results were the following. The male mortality rate from 1990 rose in 2012 from 46.6 to 63.1 per 105; this situation changed after standardising the rates by age. There was a fall in the ASMR from 84.3 (95% CI, 61.00–85.0) to 67.7 per 105 (95% CI, 67.1–68.4). The average life expectancy rose from age 61 to 65 and the APC was of 1.4 (95% CI, 1.4–1.5). The ten leading causes of death in males were: prostate cancer with an ASMR of 10.4 per 105, lung and bronchi cancer with an ASMR of 8.0 per 105, stomach cancer with an ASMR of 5.8 per 105, liver cancer with an ASMR of 5.4 per 105, colon cancer with an ASMR of 4.0 per 105, pancreas cancer with an ASMR of 3.7 per 105, lymphoid leukaemia, brain cancer, kidney cancer and larynx cancer with an ASMR of 2.0, 2.2, 2.2 and 1.5 per 105, respectively. The first five leading causes comprised 49% of the total of deaths and the subsequent five 17% of the deaths. Thus, the ten types of cancer mentioned above comprised 66% of total deaths.

The ASMR trends during the study period fluctuated according to the type of cancer. Colon cancer ASMR (4.0 per 105), brain cancer ASMR (2.2 per 105) and lymphoid leukaemia ASMR (2.0 per 105) were higher in 2012 than in 1990. Conversely, lung and bronchi cancer ASMR (16.1 per 105), stomach cancer ASMR (10.2 per 105) and larynx cancer ASMR (2.7 per 105) declined almost by 50% in 2012 (8.0, 5.8, 1.5 per 105, respectively). The types of cancer that remained with very similar mortality rates were prostate cancer (ASMR from 10.9 to 10.4 per 105) and pancreas cancer (ASMR from 3.9 to 3.7 per 105) (Table 2).

Table 2.

Mortality due to malignant tumours, Mexico 1990–2012.

Description  Death1990  Mortality rates  ASMR  95% CIADD  Death2012  Mortality rates  ASMR  95% CIADD  APC  95%  CI 
Males
Prostate  2322  5.6  10.9  10.7  11.1  76  5908  10.3  10.4  10.2  10.7  77  2.9  2.6  3.1 
Bronchi and lung  3443  8.3  16.1  15.8  16.4  67  4140  7.2  8.0  7.8  8.2  70  −0.6  −0.8  −0.4 
Stomach  2227  5.4  10.2  10.0  10.4  67  2981  5.2  5.8  5.6  6.0  66  −0.1  −0.3  0.2 
Liver  1375  3.3  6.3  6.1  6.5  66  2757  4.8  5.4  5.2  5.5  69  1.8  1.5  2.1 
Bowel  550  1.3  2.5  2.4  2.6  67  2034  3.6  4.0  3.8  4.1  64  4.6  4.2  5.1 
Pancreas  852  2.1  3.9  3.8  4.1  66  1836  3.2  3.7  3.5  3.8  67  2.1  1.7  2.5 
Lymphoid leukaemia  550  1.3  1.4  1.3  1.5  27  1139  2.0  2.0  1.9  2.1  34  1.3  0.8  1.8 
Brain  515  1.1  1.9  1.8  2.0  44  1126  2.0  2.2  2.0  2.3  51  2.2  1.7  2.6 
Kidney  446  2.4  4.4  4.2  4.5  59  1114  1.9  2.2  2.1  2.3  63  2.8  2.3  3.3 
Larynx  566  1.4  2.7  2.6  2.8  68  747  1.3  1.5  1.4  1.6  70  −0.2  −0.7  0.3 
Non-specific  1016  1.2  1.9  1.8  2.0  60  1001  1.8  1.9  1.8  2.0  63  −0.9  −1.3  −0.5 
Rest  5454  13.2  22.1  21.7  22.4  58  11,321  19.8  21.2  20.9  21.6  61  1.9  1.8  2.1 
Total  19,316  46.6  84.3  83.7  85.0  61  36,104  63.1  67.7  67.1  68.4  65  1.4  1.4  1.5 
Females
Breast  2198  5.2  6.6  6.4  6.9  56.9  5612  9.4  9.8  9.5  10.0  59  2.7  2.5  2.9 
Cervical uterine  4257  10.1  12.6  12.3  12.9  57.7  3840  6.4  6.6  6.4  6.8  59  −2.0  −2.2  −1.8 
Liver  1531  3.6  4.0  3.9  4.2  66.1  2890  4.8  4.9  4.8  5.1  69  1.3  1.0  1.6 
Stomach  1943  4.6  4.8  4.6  5.0  67.2  2593  4.3  4.3  4.2  4.5  46  −0.3  −0.5  0.0 
Bronchi and lung  1543  3.7  4.1  3.9  4.3  66.8  2238  3.8  3.8  3.7  4.0  69  0.1  −0.2  0.4 
Ovary  715  1.7  2.1  2.0  2.2  57.6  1995  3.3  3.5  3.4  3.7  59  3.1  2.7  3.5 
Pancreas  955  2.3  2.6  2.4  2.7  66.4  1993  3.3  3.4  3.3  3.6  69  1.8  1.4  2.1 
Bowel  601  1.4  1.4  1.3  1.5  67.2  1859  3.1  3.1  3.0  3.3  67  3.6  3.2  4.1 
Lymphoid leukaemia  446  1.1  1.1  1.0  1.2  27.2  956  1.6  1.6  1.5  1.7  36  1.9  1.4  2.4 
Non-specific biliary tract  647  1.5  1.7  1.6  1.9  67.8  591  1.0  1.0  0.9  1.1  70  −2.0  −2.5  −1.5 
Non-specific  1079  2.6  2.9  2.8  3.1  59.5  984  1.6  1.7  1.6  1.8  64  −2.0  −2.4  −1.6 
Rest  5548  13.2  14.5  14.2  14.8  59.7  11,552  19.4  19.4  19.1  19.8  63  1.8  1.6  1.9 
Total  21,463  51.1  58.5  57.9  59.2  61.3  37,103  62.2  63.1  62.4  63.7  63  0.9  0.8  1.0 

Population estimations; National Population Consensus (CONAPO), Mexico 1990–2012.

Mortality rate, rate per 105; ASMR, age-standardised mortality rates in people greater than 20 years; 95% CI, 95% confidence intervals; ADD, mean age of death; APC, annual percentage change.

Source: Based on deaths 1990–2012, Information in Health System (SINAIS). Health Secretary, Mexico.

In women, the mortality rate rose from 51.1 to 62.2 deaths per 105. A similar trend was seen when standardising rates by age: the ASMR rose from 58.5 to 63.1 (95% CI, 62.4–63.7) deaths per 105.

The average life expectancy rose from age 61 to 63 with an APC of 0.9. The most common types of cancer in 2012 were: breast cancer with an ASMR of 9.8 per 105, cervical cancer with an ASMR of 6.6 per 105, liver cancer with an ASMR of 4.9 per 105, stomach cancer with an ASMR of 4.3 per 105, lung and bronchi cancer with an ASMR of 3.8 per 105, ovarian cancer with an ASMR of 3.5 per 105, pancreas cancer, colon cancer and lymphoid leukaemia with an ASMR of 3.4, 3.1 and 1.6 per 105 cases, respectively. The pattern was very similar to the one seen in men: the first five causes of death mentioned above represented 46% of the total of deaths in 2012, and the subsequent ones represented 18%. Overall, they comprised 66% of the total of deaths from cancer in women.

In 2012, there was a rising trend in mortality in women for the following types of cancer: breast cancer (ASMR from 6.6 to 9.8 per 105), which after being in second place in 1990 placed first in 2012; ovarian cancer (ASMR from 2.1 to 3.5 per 105), colon cancer (ASMR from 1.4 to 3.1 per 105), pancreas cancer (ASMR from 2.6 to 3.4 per 105) and lymphoid leukaemia (ASMR from 1.1 to 1.6 per 105). There was a decreasing trend for: cervical cancer (ASMR from 12.6 to 6.6 per 105), which went from the first to the second place; stomach cancer (ASMR from 4.8 to 4.3 per 105), and lung and bronchi cancer (ASMR from 4.1 to 3.8 per 105).

As for mortality by state, there was no homogeneous distribution in the ASMRs. The following states had higher mortality rates in men: Sonora, Baja California Sur, Chihuahua, Nuevo Leon and Sinaloa with an ASMR of 95.47, 94.83, 84.11, 82.88, 82.53, cases per 105, respectively. Tlaxcala ranked last with an ASMR of 53.43 cases per 105 and the national death rate was of 94.83 per 105 inhabitants.

There were also some differences in the distribution of rates by state and gender. In women, the higher mortality rates were for Colima (78.24 cases per 105), Sonora (71.82 cases per 105), Coahuila (71.02 cases per 105), Baja California (70.42 cases per 105) and Nuevo Leon (70.24 cases per 105). Durango ranked last with an ASMR of 50.69 cases per 105. The national rate was of 123.53 deaths per 105 inhabitants.

ASMR distribution of the main types of cancer by state (2012) is shown in Figs. 3 and 4.

Figure 3.

ASMR* geographical distribution of principal malignant tumours in males, Mexico 2012. *Mortality rate standardised by age.

(0.62MB).
Source: Based on deaths 2012. National System of Information in Health (SINAIS). Health Secretary, Mexico. Population estimations; National Population Consensus (CONAPO), Mexico 2012.
Figure 4.

ASMR* geographical distribution of malignant tumours in females, Mexico 2012. *Mortality rate standardised by age.

(0.63MB).
Source: Based on deaths 2012. National System of Information in Health (SINAIS). Health Secretary, Mexico. Population estimations; National Population Consensus (CONAPO), Mexico 2012.

Calculated by age, the national rate for prostate cancer was 10.4 cases per 105 men, and the states with the highest ASMR of 2012 were: Aguascalientes (15.8), Nayarit (14.2), Jalisco (13.7), Colima (13.5) and Sinaloa (13.4). The lowest rates were for the states of Hidalgo (7.9), Yucatan (7.2) and Quintana Roo (6.7).

The states with the highest ASMR for breast cancer (national rate of 9.8) were: Mexico City (14.7), Nuevo Leon (14.0), Baja California (13.6), Baja California Sur and Colima (13.3); the lowest rates were for Guerrero (5.8), Campeche (4.9) and Oaxaca (4.3).

The states with the highest ASMR for lung and bronchi cancer (national rate of 8.0 for men) were Baja California Sur (19.1), Sinaloa (18.1), Sonora (17.7), Chihuahua (14.1) and Nuevo Leon (13.0); and the states with the lowest rates were Oaxaca (3.7), Hidalgo (3.6) and Tlaxcala (2.8).

The states with the highest ASMR for cervical cancer (national rate of 6.6) were: Colima (12.5), Chiapas (9.4), Yucatan and Sonora (8.4), Campeche (8.2) and Morelos (8.1), mainly. The lowest rates were for the states of Durango (3.9), Zacatecas (3.6) and Hidalgo (3.5).

The states with the highest ASMR for stomach cancer (national rate of 5.8 for men and 4.3 for women) were the following: for men and women, Chiapas (9.5 and 7.0), Sonora (8.3 and 4.3), Oaxaca (7.4 and 5.7), Mexico City (7.4 and 5.9) and Campeche (7.4 and 5.7); the lowest rates were for the states of Nuevo León (4.3 and 3.9), Nayarit (4.0 and 2.7), Durango (4.6 and 2.1), Coahuila (3.6 and 3.9) and Aguascalientes (1.8 for women).

Fig. 5 shows the premature mortality rate by type of cancer, gender and state. Mexico City, Sonora, Baja California Sur, Veracruz and Chihuahua had higher premature mortality rates for men, with 1.32, 1.30, 1.29, 1.28 and 1.20 YPLL.

Figure 5.

Potential years of life lost index (YPLLI) due to malignant tumours in males and females, Mexico 1990–2012.

(0.46MB).
Source: Based on deaths 2012. National System of Information in Health (SINAIS). Health Secretary. Mexico. Population estimations; National Population Consensus (CONAPO), Mexico 1990–2012.

The states with the highest premature mortality rates for women were Mexico City (YPLL 1.25), Chihuahua (YPLL 1.17), Baja California (YPLL 1.15), Chiapas (YPLL 1.12) and Sonora (YPLL 1.10).

Discussion

The importance cancer has had throughout history is not only due to the progressive growth of its incidence and mortality rates, but it also to the economic impact that its treatment generates in healthcare services and in the patients’ families.

In Mexico, just as in the rest of the world, cancer has risen significantly among the population, with a clear rising trend that generates a real issue in public health.

In the 2013 PAHO/WHO report,7 it is mentioned that Mexico is part of the nine countries with decreasing trends for cancer mortality. However, the results from this study show a reduction in the mortality rates of some types of cancer only, such as cervical and lung cancer. Within the study period there was a clear rising trend in global cancer mortality, represented in the proportional mortality ratio of 2012 (12.2%) compared to the one from 1990 (9.7%).

Likewise, there was also an increase in the raw mortality rate by gender from 46.6 to 63.1 per 105 in men and from 51.1 to 63.1 per 105 in women. Although when standardising rates by age, there was still a rising trend for women with ASMR from 58.5 to 63.1 per 105, in men, the ASMR decreased from 84.3 to 67.7 per 105.

A similar scenario was reported both in the Aldaco et al.13 study during the 2000–2010 period, and in the Histopathologic Register of Malignant Neoplasms from 2011.12 In the first one, cancer mortality rates rose from 59.3 to 66.5 per 105, and in the second one, the increment went from 41.8 to 62.8 for the 1980–2008 period.

The ratio between mortality rates from men and women was very narrow, with a slight predominance in men under the age of 30 (1.4:1) and over the age of 65 (1.15:1). Conversely, women between the age of 30 and 64 (1:1.3) showed a higher risk of death. This analysis can be an important tool to measure the impact cancer has on the population.

The correspondence between the risk of death by cancer and age is already well known. Mortality rates increase at older ages, a fact that is also seen in the results of this study. This phenomenon goes hand in hand with the increasing proportion of older adults, and it can be explained by itself due to the ageing of the population Mexico is experiencing since a few decades ago. Therefore, we must not overlook the fact that the result of the demographic transition is in turn the reflection of the reduction in fertility rates and mortality itself.

The fluctuations in mortality by age and gender groups are indiscriminately associated with the shifting of those types of cancer that caused more deaths in the past.

For instance, for breast cancer, which ranked first in 2012 as leading cause of death and which took cervical cancer's place, the ASMR rising trend becomes more evident over the age of 30, when the risk for cancer is more common for women. The average life expectancy was 59 years.

Conversely, the increase in ASMR becomes more evident for prostate cancer over the age of 65 (ADD 77 years). This type of cancer represented the prime cause of death among the male population, taking lung and bronchi cancer's place. There were higher ASMR at younger ages (35–39 years) in women for stomach cancer, although there was a decreasing trend, in comparison to men (65–69 years), with ADDs of 46 and 66 years, respectively.

Another interesting fact is the differences in ASMRs by states. The highest rates for lung and bronchi cancer, colon cancer, breast and ovarian cancer were in some of the states from the North of the country (Baja California, Sonora, Chihuahua, Coahuila, Nuevo Leon, Tamaulipas). In the states from the South (Chiapas, Oaxaca, Campeche and Yucatán), the higher rates were for cervical, stomach and liver cancer. The presence of cancer in the centre of the country was heterogeneous and contrasting in their ASMRs; Mexico City had the highest YPLL, both for men (1.32) and women (1.25).

This scenario, which is undoubtedly associated with the individual characteristics of the population, different lifestyles, marginalisation, sociocultural level, poverty and/or economic resources allocated for healthcare, shows that the link between cancer and risk factors associated to its mortality need to be tackled in a more precise manner.

Likewise, and regardless of the benefits obtained with the current programmes and strategies to control cancer, there must be more epidemiologic studies that can provide other indicators, such as the incidence, death or survival rate, and that support understanding of the determinants involved, to study in depth and have a better knowledge of the real impact of this problem in our country.

One of the international models that can enable us to have an idea of the impact cancer has across the world and in our country is the GLOBOCAN registry.6 However, this system does not necessarily reflect reality, since it is based on estimates of the situation and uses sources that do not necessarily reflect the current state of cancer.

In spite of the complexity that the interpretation of the data gathered in the mortality registries generates, particularly since the lack of specifics that determine the basic causes of death in death certificates can affect their validity and reliability, analysis of mortality can serve to a great extent as a tracer indicator of the access to healthcare services. At the same time it can provide important data to analyse the epidemiologic scenario of cancer mortality, estimate the risk of death or survival among the population, and consider various scenarios to design and evaluate programmes and health policies.

While we cannot overlook the fact that even though it is not enough to analyse mortality in isolation to determine the real situation that cancer represents in healthcare services and in the population, it must be pointed out that the results of the analysis, even if to a certain extent they limit a clear assessment of the problem, are the best approach to reality and facilitate decision-making in healthcare.

To conclude, it is essential to strive for an ongoing improvement of the quality of registries to reduce potential errors that can limit the analysis of mortality and, of course, to not overlook the clear need to have population-based regional epidemiologic cancer registries, which will enable us to understand the real situation related to cancer in our country and support better decision-making within programmes and strategies that aim at training for early diagnosis and timely treatment. The impact will be reflected on the incidence and mortality of cancer over the coming years.

Conflict of interest

There are no conflicts of interest.

References
[1]
D.M. Parkin, F. Bray, J. Ferlay, et al.
Global cancer statistics, 2002.
CA Cancer J Clin, 55 (2005), pp. 108
[2]
World Health Organization.
The World Health Organization's fight against cancer: strategies that prevent, cure and care.
WHO, (2007),
[3]
Organización Mundial de la Salud.
Control del cáncer. Aplicación de conocimietnos. Guía de la OMS para desarrollar programas eficaces.
OMS, (2007),
[4]
Organización Mundial de la Salud.
Cáncer. Nota descriptiva N°297, Febrero de 2014.
(2014),
[5]
S.S. Ramalingam, T.K. Owonikoko, F.R. Khuri.
Lung cancer: new biological insights and recent therapeutic advances.
CA Cancer J Clin, 61 (2011), pp. 91-112
[6]
J. Ferlay, I. Soerjomataram, M. Ervik, et al.
GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality World wide: IARC Cancer Base No. 11 [Internet].
International Agency for Research on Cancer, (2013),
[7]
Organización Panamericana de la Salud Cáncer en las Américas.
Perfiles de país, 2013.
OPS, (2013),
[8]
P. Kuri-Morales, M. Vargas-Cortés, Z. López-Sibaja, et al.
Epidemiología del cáncer en México.
El cáncer en México,
[9]
A. Fajardo-Gutiérrez, J.M. Mejía-Arangueré, L. Hernández-Cruz, et al.
Epidemiología descriptiva de las neoplasias malignas en niños.
Rev Panam Salud Pública, 6 (1999), pp. 75-88
[10]
Instituto Nacional de Estadística y Geografía.
Mujeres y hombres en México.
13th ed., (2009),
[11]
V.J. Tovar-Guzmán, F.J. López-Antuñano, N. Rodríguez-Salgado.
Tendencias recientes de la mortalidad por cáncer pulmonar en México, 1980.2000.
Rev Panam Salud Publica, 17 (2005), pp. 254-262
[12]
Compendio del Registro Histopatológico de las Neoplasias Malignas en México.
Secretaría de Salud. Dirección General de Epidemiología, (2011),
[13]
F. Aldaco-Sarvide, P. Pérez-Pérez, G. Cervantes-Sánchez, et al.
Mortalidad por cáncer en México 2000-2010: el recuento de los daños.
GAMO, 11 (2012), pp. 371-379
[14]
Instituto Nacional de Estadística, Geografía e Informática.
Defunciones registradas en la República Mexicana 1990-2012.
INEGI, (2013),
[15]
Dirección General de Información en Salud (DGIS). Base de datos de Estimaciones de población 1990-2012, COLMEX. [en línea]: Sistema Nacional de Información en Salud (SINAIS). México: Secretaría de Salud. http://www.sinais.salud.gob.mx [accessed January, 2014].
[16]
Consejo Nacional de Población.
Proyecciones de Población (CONAPO) de la República Mexicana, 1990-2010.
CONAPO, (2013),
[17]
Organización Mundial de la Salud. Clasificación Internacional de Enfermedades, X Revisión. 1998–2000. Ginebra: OMS; 1994.
[18]
D. Clayton, E. Schifflers.
Models for temporal variation in cancer rates. Age, period and age-cohort models.
Stat Med, 6 (1987), pp. 449-467
[19]
O.M. Jensen, D.M. Parkin, R. MacLennan, et al.
Cancer registration principles and methods.
IARC Scientific Publications No. 95, (1995),
[20]
J.M. Romeder, J.R. Mc Whinnie.
Potential years of life lost between ages 1 and 70: an indicator of premature mortality for health planning.
Int J Epidemiol, 6 (1977), pp. 143-151
[21]
Organización Panamericana de la Salud.
Técnicas para la medición del impacto de la mortalidad: años potenciales de vida perdidos.
Bol Epidemiol, 24 (2003), pp. 1-4
Copyright © 2015. Sociedad Médica del Hospital General de México
Opciones de artículo