Buscar en
Revista Iberoamericana de Micología
Toda la web
Inicio Revista Iberoamericana de Micología Nematophagous fungi from decomposing cattle faeces in Argentina
Información de la revista
Vol. 32. Núm. 4.
Páginas 252-256 (Octubre - Diciembre 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3555
Vol. 32. Núm. 4.
Páginas 252-256 (Octubre - Diciembre 2015)
Original article
Acceso a texto completo
Nematophagous fungi from decomposing cattle faeces in Argentina
Hongos nematófagos en heces bovinas en descomposición en Argentina
Visitas
3555
Carlos Alfredo Saumella,
Autor para correspondencia
saumell@vet.unicen.edu.ar

Corresponding author.
, Alicia Silvina Fernándezb,1, Luis Alberto Fuséa, Manuela Rodrígueza, María Federica Sagüésa, Lucía Emilia Iglesiasa
a Área de Parasitología y Enfermedades Parasitarias, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Centro de Investigación Veterinaria de Tandil (CIVETAN) – CONICET, Paraje Arroyo Seco, B7000 Tandil, Argentina
b BioNem Research Centre, 44 Kipling Ave., Guelph N1H 8C2, Ontario, Canada
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (1)
Tablas (2)
Table 1. Frequency of occurrence (%) of nematophagous fungi in decomposing cattle faeces in five provinces and in the study as a whole.
Table 2. Assemblage, diversity and species richness of nematophagous fungi in decomposing cattle faeces in five provinces of Argentina.
Mostrar másMostrar menos
Abstract
Background

Biological control of gastrointestinal nematodes of ruminants by use of nematophagous fungi would become part of any livestock parasite integral control system. Identifying autochthonous species that could then be selected for mass production is an important phase in the practical use of biological control.

Aims

To search for nematophagous fungi with potential use as biological control agents against gastrointestinal nematodes in Argentina.

Methods

Decomposing cattle faeces sampled in different locations were incubated in water agar 2% with Panagrellus sp. The developed nematophagous fungi were transferred to new water agar 2% plates and then to corn meal agar plates in order to carry out their identification. Fungal diversity and richness were also assessed.

Results

Seventeen species from nine genera of nematophagous fungi were found. Twelve species were nematode-trapping fungi and three species plus two fungi identified to genus level corresponded to endoparasitic fungi. Arthrobotrys conoides, Arthrobotrys oligospora, Duddingtonia flagrans, Monacrosporium doedycoides, Arthrobotrys robusta and Drechmeria coniospora were the most frequently isolated species overall in the whole study (6.6%, 5.7%, 5.7%, 5.7%, 4.7% and 4.7%, respectively) although other species were more frequently recorded at local levels such as Arthrobotrys pyriformis (18.8%). Only A. conoides has been previously isolated from ruminant faecal samples in Argentina. Five nematode-trapping fungal species are mentioned for the first time in the Americas

Conclusions

D. flagrans and A. conoides, both identified in the present study, are among the most promising ones as biological control agents against gastrointestinal nematodes of ruminants.

Keywords:
Nematophagous fungi
Diversity
Ecology
Decomposing faeces
Fungal colonisation
Resumen
Antecedentes

El control biológico de los nematodos gastrointestinales de los rumiantes mediante hongos nematófagos es una herramienta a considerar en los sistemas integrados de control parasitario del ganado. La identificación de las especies autóctonas de estos hongos que puedan ser seleccionadas para producción masiva es de gran importancia en el uso práctico del control biológico.

Objetivos

Llevar a cabo una búsqueda de hongos nematófagos de uso potencial como agentes de control biológico contra nematodos gastrointestinales en Argentina.

Métodos

Se trabajó con muestras de heces bovinas en descomposición obtenidas en diferentes lugares. Las heces se incubaron en agar agua 2% con Panagrellus sp. Los hongos nematófagos desarrollados se transfirieron a nuevas placas con agar agua 2% y luego a placas con agar harina de maíz para su identificación. También se estableció la diversidad y riqueza fúngicas.

Resultados

Se aislaron diecisiete especies de hongos nematófagos, comprendidas en nueve géneros. Doce resultaron ser hongos depredadores, mientras que otras tres especies y dos hongos identificados hasta género eran hongos endoparásitos. Arthrobotrys conoides, Arthrobotrys oligospora, Duddingtonia flagrans, Monacrosporium doedycoides, Arthrobotrys robusta y Drechmeria coniospora fueron las especies más aisladas más en todo el estudio (6.6%, 5.7%, 5.7%, 5.7%, 4.7% y 4.7%, respectivamente), aunque otras especies aparecieron más frecuentemente de manera local, como Arthrobotrys pyriformis (18.8%). Solamente Arthrobotrys conoides se había aislado previamente en Argentina a partir de heces bovinas. Cinco especies depredadoras se mencionan por primera vez en toda América.

Conclusiones

D. flagrans y A. conoides, dos de las especies aisladas en el presente estudio, se encuentran entre las más prometedoras como agentes de control biológico de nematodos gastrointestinales de rumiantes.

Palabras clave:
Hongos nematófagos
Diversidad
Ecología
Heces en descomposición
Colonización fúngica
Texto completo

Gastrointestinal parasitosis in livestock is a serious health problem in a variety of production systems. Resistance to conventional anthelmintics,2,5,13,47 the enforcement of strict limits for drug residues in food, and the environmental impact of the widespread use of antiparasitic drugs14,15,17,21,22,49 emphasise the need for implementing alternative tools in the fight against parasitosis. Biological control of gastrointestinal parasites is a promising alternative to tackle this problem. It is based upon the idea of exploiting parasites’ natural enemies to interfere with their natural cycles.27

Biological control by use of nematophagous fungi is considered to be part of parasite integral control systems. Among these fungi, Duddingtonia flagrans is one of the most promising species.27 Cosmopolitan nematophagous fungi colonise soils rich in organic matter under different temperature and humidity conditions, thus contributing to the biological equilibrium of the soil by interacting with local microflora and microfauna. They are usually isolated from soil and faeces from different animals.

A number of studies have been performed in different world eco-regions to identify nematophagous fungi. The search for nematophagous fungi with potential use in biological control in agriculture and livestock production in the Americas includes, among others, Mahoney & Strongman30 in Canada, Lappe and Ulloa26 and Acevedo-Ramírez et al.1 in Mexico, Búcaro4 in El Salvador, Orozco,35 Soto-Barrientos et al.45 and Peraza-Padilla et al.36 in Costa Rica, Persmack et al.37 in Costa Rica, Nicaragua and Panama, Rubner39 in Ecuador, and Saumell41 and Saumell et al.42 in Brazil. Gamundí and Spinedi18 is the only study to date describing the presence of nematophagous fungi such as nematode-trapping and endoparasitic ones (note: egg- and cyst-parasitic fungi and toxin-producing fungi are not the focus of the present study).

The aim of this study was to search for nematophagous fungi with potential use as biological control agents against gastrointestinal nematodes in Argentina, and classify them taxonomically. The search for these fungi in cattle faeces from the main livestock regions in Argentina will contribute to identify autochthonous species naturally colonising bovine faeces. The most efficient of those species, provided that they resist laboratory manipulation, could then be selected for mass production and formulation for practical use in livestock.

Materials and methodsSampling and isolation of fungi

Samples of decomposing cattle faeces naturally voided were collected from September to November in two consecutive years. The collection sites were commercial cattle farms close to the following cities: Tandil (37°19′18″S, 59°04′50″W) and Azul (36°49′01″S, 59°50′05″W) in Buenos Aires province; Reconquista (29°09′41″S, 59°42″21′O) in Santa Fe province; Río Cuarto (29°45’44″S, 63°27’29”W) in Córdoba province; Resistencia (27°27′5″S, 58°59′12″W) in Chaco province; and Victoria (30°59′6″S, 57°55′12″W) in Entre Ríos province (Fig. 1). Samples from Tandil included as well those collected at the University Campus of the Faculty of Veterinary Sciences, National University of Central Buenos Aires Province. Subsamples of approximately 2g were incubated at room temperature (20–24°C) in Petri dishes containing water agar 2% that had been previously inoculated with Panagrellus sp. to promote fungal growth. The plates were regularly checked for three weeks under optical microscope with magnification capacity up to 100×, after which the nematophagous fungi that had developed were transferred to similar plates (water agar 2% plus Panagrellus sp.). Once the presence of fungal conidia or zoospores – depending on the fungi – had been detected in the second plates, the fungi were transferred to Petri dishes containing corn meal agar (Difco®). In the case of Myzocytium sp. and Stylopage grandis, the transferred structures were nematodes infected with zoospores.

Fig. 1.

Map of Argentina showing the sampling sites where decomposing cattle faeces were collected. Each black circle represents one sampling site: 1: Resistencia (27°27′5″S, 58°59′12″W), Chaco province; 2: Reconquista (29°09′41″S, 59°42′21″O), Santa Fé province; 3: Victoria (30°59′6″S, 57°55′12″W), Entre Ríos province; 4: Río Cuarto (29°45’44″S, 63°27’29”W), Córdoba province; 5: Azul (36°49′01″S, 59°50′05″W) and 6: Tandil (37°19′18″S, 59°04′50″W), Buenos Aires province.

(0,08MB).
Identification of fungi and data analysis

Each isolate from either sterile or inoculated plates was identified under lightfield microscope using the keys by Subramanian,46 Cooke and Godfrey,7 Cooke and Dickinson,6 Haard,19 Schenk et al.,43 van Oorschot,48 de Hoog and van Oorschot,8 Liu and Zhang,28 Rubner,40 and Scholler et al.,44 and on the basis of the original descriptions; lactophenol cotton blue stain was applied as needed. When needed, scientific names were updated according to the latest nomenclatural changes.23 The most promising fungal isolates were kept on sterile water agar plates refrigerated at 4°C in the Laboratory of Parasitology, FCV, UNICEN, Tandil.

The diversity of nematophagous fungi was assessed based on the Simpson (D′) and Shannon (H′) diversity indices29 and the species richness index (S′), using the PAST v.3 software.20

Results and discussion

Seventeen species from nine genera of nematophagous fungi were found colonising decomposing cattle manure in the sites sampled. Twelve species belonged to nematode-trapping fungi, with adhesive nets being the mechanism of action most commonly observed. Monacrosporium doedycoides, Arthrobotrys conoides, Arthrobotrys oligospora, Arthrobotrys robusta, D. flagrans and Drechmeria coniospora were the most frequently isolated species, although frequencies of occurrence at provincial level show a different picture for several fungal species (Table 1). For example, Arthrobotrys pyriformis was by far the most frequent species (18.8%) in Entre Ríos but its overall frequency in the study (2.8%) masks the relative importance this species might have at local level. Equally, no single species was found in more than two provinces (Table 1). Two out of the five endoparasitic fungi found were identified only to genus level, i.e. Verticillium sp. and Myzocytium sp.

Table 1.

Frequency of occurrence (%) of nematophagous fungi in decomposing cattle faeces in five provinces and in the study as a whole.

Fungal species  MoAc  ProvincesaOverall frequency (%)b 
    BA  Co  SF  Ch  ER   
Dactylellina lysipagaDrechsler  Adhesive knobs  1.7  –  –  –  –  0.9 
Arthrobotrys megalospora(Drechsler) M. Scholler, Hagedorn & A. Rubner  Adhesive nets  1.7  –  8.3  –  –  1.9 
Arthrobotrys oudemansiiM. Scholler, Hagedorn & A. Rubner  Adhesive nets  1.7  –  8.3  –  –  1.9 
Duddingtonia flagrans(Dudd.) R.C. Cooke  Adhesive nets  8.6  –  –  –  6.3  5.7 
Arthrobotrys oligosporaFresen.  Adhesive nets  6.9  –  –  –  12.5  5.7 
Arthrobotrys conoidesDrechsler  Adhesive nets  8.6  –  –  –  12.5  6.6 
Arthrobotrys robustaDudd.  Adhesive nets  5.2  –  –  –  12.5  4.7 
Arthrobotrys pyriformis(Juniper) S. Schenk, W.B. Kendr. & Pramer  Adhesive nets  –  –  –  –  18.8  2.8 
Arthrobotrys musiformisDrechsler  Adhesive nets  –  –  –  –  12.5  1.9 
Arthrobotrys thaumasia(Drechsler) S. Schenk, W.B. Kendr. & Pramer  Adhesive knobs  –  –  –  25  –  1.9 
Monacrosporium doedycoides (Drechsler) R.C. Cooke & C.H. Dickinson  Constricting rings  8.6  8.3  –  –  –  5.7 
Stylopage grandisDudd.  Adhesive hyphae  3.5  –  –  25  –  3.8 
Drechmeria coniospora(Drechsler) W. Gams & H.-B. Jansson  Adhesive conidia  8.6  –  –  –  –  4.7 
Podocrella harposporifera(Samuels) Chaverri & Samuels  Ingested conidia  3.5  8.3  –  –  –  2.8 
Catenaria anguillulaeSorokin  Mobile zoospores  5.2  –  –  –  –  2.8 
Myzocytium sp.Schenk  Mobile zoospores  1.7  8.3  –  –  –  1.9 
Verticillium sp.Nees  Adhesive conidia  –  16.7  –  –  –  1.9 

BA: Buenos Aires; Co: Córdoba; SF: Santa Fé; Ch: Chaco; ER: Entre Ríos.

a

(Number of Petri dishes with the fungus in a given province/n samples in the respective province)×100.

b

(Total number of Petri dishes with the fungus/n samples in the whole survey)×100.

c

MoA: Mechanism of action BA: Buenos Aires; Co: Córdoba; SF: Santa Fé; Ch: Chaco; ER: Entre Ríos.

Species richness was highest in Buenos Aires province and lowest in Santa Fe and Chaco provinces (Table 2); however, the number of samples was much lower in one of the latter, i.e. Chaco, than in the former. Future studies should consider improved, balanced sampling schemes that would allow valid inferences in terms of climate and soil conditions favouring particular species of nematophagous fungi.

Table 2.

Assemblage, diversity and species richness of nematophagous fungi in decomposing cattle faeces in five provinces of Argentina.

Province  AssemblageDiversitySpecies richness (S′) 
  SC  FI  (D′)  (H′)   
Buenos Aires  58  38  0.8989  2.398  13 
Córdoba  12  0.72  1.332 
Santa Fé  12  0.5  0.6931 
Chaco  0.5  0.6931 
Entre Ríos  16  12  0.8194  1.748 
Mean (SD)  21.2 (20.77)  12.2 (14.91)  0.6877 (0.1827)  1.373 (0.7276)  5.4 (4.561) 

SC: Number of samples collected; FI: Number of fungal isolations; (D’): Simpson index; (H’): Shannon index; (S’): species richness index.

To the knowledge of the authors, five of the nematode-trapping fungal species isolated in the present study have not been described previously anywhere in the Americas, i.e. Dactylellina lysipaga, Arthrobotrys megalospora, Arthrobotrys oudemansii, M. doedycoides, Arthrobotrys thaumasia, D. flagrans, A. robusta, and A. pyriformis.

Among the species isolated in the present study, only A. conoides has been previously described in sheep faecal samples in Argentina,18 along with Arthrobotrys cladodes isolated from decomposing wood, and Gamsylella gephyropaga (=Monacrosporium gephyropagum) isolated from soil. Gamundí and Spinedi18 used an entomology needle under optical microscope to collect conidia directly from fallen leaves, soil, wood, or sheep dung, and then inoculated Petri dishes. A different approach was used in the present study which allowed the isolation of a higher number of other predator and endoparasitic fungi despite the limited number of locations sampled.

Other studies conducted in the Americas have shown the cosmopolitan nature of nematophagous fungi. Several species were found in different substrates in Canada,3,10,30 such as soil, decayed wood, decayed plants, compost, and animal faeces. Estey and Olthof10 isolated from faeces only A. oligospora, A conoides and Dactylellina (=Dactylella) asthenopaga. However, a more recent survey in Eastern Canada30 studying cattle faeces in different state of decomposition revealed seventeen identified and one unidentified fungi. Ten of the identified ones have also been found in the current study, i.e. A. conoides, D. (=Arthrobotrys) flagrans, Arthrobotrys musiformis, A. oligospora, A. pyriformis, A. robusta, Catenaria anguillulae, D. coniospora, Podocrella harposporifera (=Harposporium anguillulae) and Myzocytium sp. Many studies in the United States of America have shown extensively over the years the presence of nematophagous fungi across the country, with examples from early to mid-twentieth century to these days.9,12,24,25,31–34,38 Sadly, though, no record seems to exist of any survey of these fungi isolated directly from faeces; those experiments using faeces as substrates for nematophagous fungi in that country relate only to efficacy trials, which is outside the scope of the present work. Lappe and Ulloa26 conducted the first survey in Mexico where A. oligospora and A. conoides were isolated. Later, Flores-Crespo et al.16 isolated nematophagous fungi from ovine and bovine faeces with the aim to evaluate the in vitro predacious capacity of eight autochthonous isolates, with A. oligospora, D. flagrans and Monacrosporium eudermatum among them; the first two species were also found in the current study. More recently, Acevedo-Ramírez et al.1 isolated several nematophagous fungi from different substrates such as soil, roots and ruminant faeces – ovine, bovine and caprine – in Mexico; the species identified were A. oligospora, A. musiformis, A. conoides, Arthrobotrys brochopaga, Arthrobotrys superba, Arthrobotrys kirghizica and G. gephyropaga (=M. gephyropagum). The first three species were also isolated in the present study although only A. oligospora coincides with the present study as isolated from ruminant faeces collected from soil; the other Mexican isolations from ruminant faeces were A. brochopaga and A. kirghizica. Búcaro4 isolated eighteen species in El Salvador from cultivated and non-cultivated soils from all fifteen soil groups present in that country. Although that screening was carried out contemplating the future use of nematophagous fungi as phytophagous, some species were the same ones identified in the present study and have potential for the control of gastrointestinal parasites in domestic animals, e.g. A. oligospora, A. musiformis, P. harposporifera (=Harposporium anguillulae) and S. grandis. The most frequently found species reported by Búcaro,4 i.e. Stylopage hadra, however, was not isolated in the present survey. Rubner39 isolated nine species of nematophagous fungi from soil at different altitudes and climatic conditions in Ecuador. Four species belonged to the genus Monacrosporium and five to the genus Arthrobotrys; among them, A. musiformis, A. conoides and A. oligospora were also found in the current study.

Persmack et al.37 isolated in Costa Rica Monacrosporium sp., A. musiformis, H. anguillulae, C. anguillulae and Acaulopage pectospora. Peraza-Padilla et al.36 also isolated several species of nematophagous fungi; among them, Monacrosporium sp. also was found in the present study. However, the two screenings mentioned above were only of soil samples from crop land and not livestock-rearing areas. Two other screenings for nematophagous fungi conducted in that country involved the collection of samples from a diversity of substrates such as various crop soils, soil, compost, dead leaves, and faeces from cattle, sheep, goats and horses. A. oligospora, A. (=Candelabrella) musiformis and Dactylella sp. were identified in the first of them.35 In the most recent study, Soto Barrientos et al.45 identified four species of nematode-trapping fungi – A. oligospora, A. (=Candelabrella) musiformis, A. conoides and A. dactyloides –, three species of egg-parasitic fungi – Trichoderma sp., Beauveria sp., Clonostachys sp. –, and one endoparasitic fungus, Lecanicillium sp. Neither of these two studies, however, makes it clear which of the nematophagous species, if any, were isolated from the sampled livestock faeces. Of all the thirteen species of nematode-trapping fungi isolated in Panama and Nicaragua,37 only a handful were also identified in the present study, i.e. Stylopage sp., A. conoides, A. musiformis, A. oligospora, and Monacrosporium sp.; however, all the endoparasitic fungi isolated here were also identified by Persmack et al.37. It is important to remark, though, that all samples in that Central America screening were only from crop soils. Saumell41 isolated in Brazil 293 fungi from cow pats and twenty-one species were identified, prevailing the network-forming species among the nematode-trapping fungi and the ingestible spores among the endoparasites. The most abundant species of nematode-trapping fungi were A. oligospora, A. musiformis and Monacrosporium leptosporum, while P. harposporifera (=H. anguillulae), Harposporium lilliputanum and Myzocitium sp. were the most abundant of the endoparasites. Subsequently, fungal isolations from fresh faeces were searched for, given that the fungal capacity of surviving gut passage in animals is a desirable characteristic. A total of ten isolates were found in fresh bovine faeces, the species identified being A. oligospora, M. eudermatum, H. lilliputanum, Gamsylella gephyropaga (=M. gephyropagum), A. musiformis, and Monacrosporium gampsosporum.42 Later on, Falbo et al.11 recovered four fungal isolates with predatory activity in Brazil but only two were identified, i.e. A. musiformis and A. conoides. Although none of them were isolated directly from livestock faeces, the former was found in soil samples from a commercial sheep property, while the latter was isolated from soil samples taken from a crop-livestock enterprise that included sheep. Both fungal species were also found in the present study.

All these studies in the Americas have contributed to the knowledge of several species of nematophagous fungi that could be considered for biological control of gastrointestinal parasites. Further studies would be needed to acquire in-depth knowledge of the characteristics of each fungal isolate and to test its potential as biological control agent against parasites.

The fact that as many as five fungal species found in the present study have not been described previously in the Western Hemisphere stresses the importance of finding nematophagous fungi species native to the region where biological control will be applied. Identifying species well adapted to particular livestock production regions is critical for implementing biological control using nematophagous fungi. D. flagrans and A. conoides, both identified in the present study, are among the most promising ones as biological control agents against gastrointestinal nematodes of ruminants.

Conflict of interest

The authors declare that there is no conflict of interest.

Acknowledgments

This project was partially financed by the Fondo para la Investigación Científica y Tecnológica (FONCyT-PICT No. 33132) of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

References
[1]
P.M.C. Acevedo-Ramírez, H. Quiroz-Romero, R.O. Valero-Coss, P. Mendoza-de Gives, J.L. Gómez.
Nematophagous fungi from Mexico with activity against the sheep nematode Haemonchus contortus.
Rev Iberolat Parasitol, 70 (2011), pp. 101-108
[2]
O. Anziani, P. Paggi, G. Burgos, M. Ferreira, R. Galarza.
Macrocyclic lactones in cattle in Argentina. Persistence of status of resistance.
Proceedings of the 23rd international conference of the World Association for the Advancement of Veterinary Parasitology,
[3]
G.L. Barron.
The nematode destroying fungi. Topics in Mycobiology No. 1.
Canadian Biological Publications, Ltd., (1977),
[4]
R.D. Búcaro.
Hongos nematófagos de El Salvador.
Rev Biol Trop, 31 (1983), pp. 25-28
[5]
J. Caracostantogolo, O. Anziani, J. Romero, V. Suárez, C.A. Fiel.
Resistencia a los antihelmínticos en Argentina.
Enfermedades parasitarias de importancia clínica y productiva en rumiantes. Fundamentos epidemiológicos para su diagnóstico y control, pp. 255-282
[6]
R.C. Cooke, C.H. Dickinson.
Nematode-trapping species of Dactylella and Monacrosporium.
Trans Brit Mycol Soc, 48 (1965), pp. 621-629
[7]
R.C. Cooke, B.E.S. Godfrey.
A key to the nematode-destroying fungi.
Trans Brit Mycol Soc, 47 (1964), pp. 61-74
[8]
G.S. de Hoog, C.A.N. van Oorschot.
Taxonomy of the Dactylaria complex VI. Key to the genera and check-list of epithets.
Stud Mycol, 26 (1985), pp. 97-122
[9]
C. Drechsler.
Some Hyphomycetes that prey on free-living terricolous nematodes.
Mycologia, 29 (1937), pp. 447-552
[10]
R.H. Estey, T.H. Olthof.
The occurrence of nematophagous fungi in Quebec.
Phytoprotection, 46 (1965), pp. 14-17
[11]
M.K. Falbo, V.T. Soccol, I.E. Sandini, V.A. Vicente, D. Robl, C.R. Soccol.
Isolation and characterization of the nematophagous fungus Arthrobotrys conoides.
Parasitol Res, 112 (2013), pp. 177-185
[12]
F.C. Farrell, B.A. Jaffee, D.R. Strong.
The nematode-trapping fungus Arthrobotrys oligospora in soil of the Bodega marine reserve: distribution and dependence on nematode-parasitized moth larvae.
Soil Biol Biochem, 38 (2006), pp. 1422-1429
[13]
C. Fiel, M. Guzmán, P. Steffan, E. Riva, E. Rodríguez.
Cattle worms resistance to Ivermectin treatments: effects on production.
Proceedings of the 23rd International Conference of the World Association for the Advancement of Veterinary Parasitology,
[14]
K.D. Floate.
Endectocide use in cattle and fecal residues: environmental effects in Canada.
Can J Vet Res, 70 (2006), pp. 1-10
[15]
K.D. Floate.
Endectocide residues affect insect attraction to dung from treated cattle: implications for toxicity tests.
Med Vet Entomol, 21 (2007), pp. 312-322
[16]
J. Flores-Crespo, D. Herrera-Rodríguez, V. Vásquez-Prats, R. Flores-Crespo, E. Liébano-Hernández, P. Mendoza-de Gives.
Acción depredadora in vitro de ocho aislados de hongos contra el nematode Panagrellus redivivus.
Rev Latinoam Microbiol, 41 (1999), pp. 239-244
[17]
B. Förster, A.B.A. Boxall, A. Coors, J. Jensen, M. Liebig, L.J. Pope, et al.
Fate and effects of ivermectin on soil invertebrates in terrestrial model ecosystems.
Ecotoxicology, 20 (2011), pp. 234-245
[18]
I.J. Gamundí, H.A. Spinedi.
Sobre la presentación de hongos depredadores de nematodos en la Argentina.
Physis, 41 (1982), pp. 37-46
[19]
K. Haard.
Taxonomic studies on the genus Arthrobotrys Corda.
Mycologia, 60 (1968), pp. 1140-1159
[20]
Ø. Hammer, D.A.T. Harper, P.D. Ryan.
PAST: paleontological statistics software package for education and data analysis.
Palaeontol Electron, 4 (2001),
[21]
L.E. Iglesias, C.A. Saumell, A.S. Fernández, L.A. Fusé, A.L. Lifschitz, E.M. Rodríguez, et al.
Environmental impact of ivermectin excreted by cattle treated in autumn on dung fauna and degradation of faeces on pasture.
Parasitol Res, 100 (2006), pp. 93-102
[22]
L.E. Iglesias, L.A. Fusé, A.L. Lifschitz, E.M. Rodríguez, M.F. Sagüés, C.A. Saumell.
Environmental monitoring of ivermectin excreted in spring climatic conditions by treated cattle on dung fauna and degradation of faeces on pasture.
Parasitol Res, 108 (2011), pp. 1185-1191
[23]
IndexFungorum.org [page on Internet]. Index Fungorum Partnership; c2014 [referenced 24 February 2014] Available at: http://www.indexfungorum.org/.
[24]
B.A. Jaffee, D.R. Strong.
Strong bottom-up and weal top-down effects in soil: nematode-parasitized insects and nematode-trapping fungi.
Soil Biol Biochem, 37 (2005), pp. 1011-1021
[25]
B.A. Jaffee, D.R. Strong, A.E. Muldon.
Nematode-trapping fungi of a natural shrubland: tests for food chain involvement.
Mycologia, 88 (1996), pp. 554-564
[26]
P. Lappe, M. Ulloa.
Hongos destructores de nematodos en algunos suelos de México Cultivo e identificación de depredadores y presas.
Bol Soc Mex Micol, 17 (1982), pp. 99-111
[27]
M. Larsen.
Biological control of nematode parasites in sheep.
J Anim Sci, 84 (2006), pp. 133-139
[28]
X.Z. Liu, K.Q. Zhang.
Nematode-trapping species of Monacrosporium with special reference to two new species.
Mycol Res, 98 (1994), pp. 862-868
[29]
A.E. Magurran.
Ecological diversity and its measurement.
Princeton University Press, (1988),
[30]
C.J. Mahoney, D.B. Strongman.
Nematophagous fungi from cattle manure in four states of decomposition at three sites in Nova Scotia.
Can Mycol, 86 (1994), pp. 371-375
[31]
R. Mankau.
Soil fungistasis and nematophagous fungi.
Phytopathology, 52 (1962), pp. 611-615
[32]
R. Mankau, O.F. Clark.
Nematode-trapping fungi in southern California citrus soils.
Plant Dis Rep, 43 (1959), pp. 968-969
[33]
H.L. Monoson, T.D. Conway, R.E. Nelson.
Four endoparasitic nematode destroying fungi isolated from Sand Ridge State Forest soil.
Mycopathologia, 1 (1973), pp. 59-62
[34]
V.L. Nguyen, J.L. Bastow, B.A. Jaffee, D.R. Strong.
Response of nematode-trapping fungi to organic substrates in a coastal grassland soil.
Mycol Res, 111 (2007), pp. 856-862
[35]
M. Orozco.
Aislamiento y caracterización de hongos nematófagos como potenciales controladores biológicos de nemátodos gastrointestinales para la producción animal.
Universidad Nacional, Costa Rica, (2005),
[36]
W. Peraza-Padilla, M. Orozco-Aveces, A. Esquivel-Hernàndez, G. Rivera-Coto, F. Chaverri-Fonseca.
Aislamiento e identificación de hongos nematófagos nativos de zonas arroceras de Costa Rica.
Agron Mesoam, 22 (2011), pp. 233-243
[37]
L. Persmack, N. Marban-Mendoza, H.-B. Jansson.
Nematophagous fungi from agricultural soils of Central America.
Nematropica, 25 (1995), pp. 117-124
[38]
D. Pramer.
Nematode-trapping fungi.
Science, 144 (1964), pp. 382-388
[39]
A. Rubner.
Predacious fungi from Ecuador.
Mycotaxon, 51 (1994), pp. 143-151
[40]
A. Rubner.
Revision of predacious Hyphomycetes in the Dactylella-Monacrosporium complex.
Stud Mycol, 39 (1996), pp. 1-134
[41]
Saumell CA.
Colonização de bolos fecais bovinos e fezes ovinas por fungos nematófagos e sua ocorrência em fezes frescas bovinas na Zona da Mata de Minais Gerais.
Universidad Federal de Minas Gerais, Brazil, (1998),
[42]
C.A. Saumell, C.deP. Santos, T. Padilha, M.V.C. Roque.
Nematophagous fungi in fresh faeces of cattle in the Mata Region of Minas Gerais, Brazil.
Vet Parasitol, 82 (1999), pp. 217-220
[43]
S. Schenk, W.B. Kendrick, D. Pramer.
A new nematode-trapping hyphomycetes and a re-evaluation of Dactylaria and Arthrobotrys.
Can J Bot, 55 (1977), pp. 977-985
[44]
M. Scholler, G. Hagedorn, A. Rubner.
A reevaluation of predatory orbiliaceous fungi. II. A new generic concept.
Sydowia, 51 (1999), pp. 89-113
[45]
N. Soto-Barrientos, J. de Oliveira, R. Vega-Obando, D. Montero-Caballero, B. Vargas, J. Hernàndez-Gamboa, et al.
In vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes.
Rev Biol Trop (Int J Trop Agric), 59 (2011), pp. 37-52
[46]
C.V. Subramanian.
Dactylella, Monacrosporium and Dactylaria.
J Indian Bot Soc, 42 (1963), pp. 291-300
[47]
I. Sutherland, D. Leathwick.
Anthelmintic resistance in nematode parasites of cattle: a global issue?.
Trends Parasitol, 27 (2011), pp. 176-181
[48]
C.A.N. Van Oorschot.
Taxonomy of the Dactylella complex V. A review of Arhtrobotrys and allied genera.
Stud Mycol, 26 (1985), pp. 61-96
[49]
R. Wall, S. Beynon.
Area-wide impact of macrocyclic lactone parasiticides in cattle dung.
Med Vet Entomol, 26 (2012), pp. 1-8

Current address: Área de Parasitología y Enfermedades Parasitarias, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Centro de Investigación Veterinaria de Tandil (CIVETAN) – CONICET, Paraje Arroyo Seco, B7000 Tandil, Argentina.

Copyright © 2013. Revista Iberoamericana de Micología
Opciones de artículo
Herramientas