En este artículo se presenta una novedosa metodología para la construcción de modelos borrosos lingüísticamente interpretables, a partir de datos de entrada y salida, de procesos dinámicos. Se describe una sencilla técnica de agrupamiento para construcción de las reglas borrosas, así como el empleo de mínimos cuadrados para ajuste de consecuentes. Para garantizar la interpretabilidad del modelo borroso la partición de los antecedentes emplea conjuntos triangulares con interpolación de 0.5. El aspecto más promisorio en nuestra propuesta consiste en alcanzar una buena precisión sin sacrificar la interpretabilidad del sistema borroso ni recurrir a otras técnicas de inteligencia artificial. Se presentan aplicaciones a problemas o conjuntos de datos ampliamente conocidos (benchmark classic) como la cámara de gas de Box-Jenkins, la serie caótica de Mackey Glass y la dinámica de cabeceo de un helicóptero a escala, y se comparan los resultados con aquellos obtenidos por otros autores que emplean técnicas diferentes.
El factor de impacto mide la media del número de citaciones recibidas en un año por trabajos publicados en la publicación durante los dos años anteriores.
© Clarivate Analytics, Journal Citation Reports 2025
SJR es una prestigiosa métrica basada en la idea de que todas las citaciones no son iguales. SJR usa un algoritmo similar al page rank de Google; es una medida cuantitativa y cualitativa al impacto de una publicación.
Ver másSNIP permite comparar el impacto de revistas de diferentes campos temáticos, corrigiendo las diferencias en la probabilidad de ser citado que existe entre revistas de distintas materias.
Ver más
