Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Modelado de Amortiguadores guiado por sus Diagramas Característicos
Información de la revista
Vol. 12. Núm. 3.
Páginas 282-291 (Julio - Septiembre 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4024
Vol. 12. Núm. 3.
Páginas 282-291 (Julio - Septiembre 2015)
Open Access
Modelado de Amortiguadores guiado por sus Diagramas Característicos
Modeling of Dampers guided by their Characteristic Diagrams
Visitas
4024
Jorge de-J. Lozoya-Santos
Autor para correspondencia
A00944078@itesm.mx

Autor para correspondencia.
, Diana Hernández-Alcantara, Ruben Morales-Menendez, Ricardo A. Ramírez-Mendoza
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. E. Garza Sada, 2501, Monterrey, NL 64,849 México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Una metodología para modelar amortiguadores guiada por sus diagramas característicos es presentada y validada. Los diagramas característicos del amortiguador son construidos a partir de datos experimentales generados por pruebas estándar: fuerza versus desplazamiento y velocidad versus aceleración. Estos son explorados en las frecuencias de interés. Los diagramas son clasificados en siete patrones, los cuales sirven de guía para construir el modelo matemático el cual puede identificarse con algoritmos convencionales. La metodología es validada con cuatro amortiguadores comerciales de diferentes tecnologías, obteniendo resultados con errores de estimación menores al 5%.

Palabras clave:
amortiguador semi-activo
amortiguador pasivo
modelado
metodología
simulación
Abstract

A methodology for modeling guided by its characteristic damping diagrams is proposed. From experimental data generated by standard tests the damper characteristic diagrams are constructed, which considers the force versus displacement, velocity and acceleration for the frequencies of interest. These characteristic diagrams can be classified into seven patterns, which serve as a guide to build the same mathematical model that can be identified with algorithms conventional. The methodology was validated with four different technologies of commercial dampers. The precision of the results presented errors less than 5%.

Keywords:
semi-active damper passive damper modeling methodology simulation
Referencias
[Basso, 1998]
R. Basso.
Experimental Characterization of Damping Force in Shock Absorbers with Constant Velocity Excitation.
Vehicle System Dynamics, 30 (1998), pp. 431-442
[Boggs, 2009]
Boggs, C.M., 2009. The Use of Simulation to Expedite Experimental Investigations of the Effect of High-Performance Shock Absorbers. Ph.D. thesis, Virginia Polytechnic Institute and State University.
[Calvo et al., 2009]
J.A. Calvo, B. Lopez-Boada, J.L.S. Roman, A. Gauchia.
Influence of a Shock Absorber Model on Vehicle Dynamic Simulation.
Proc. IMechE Part D: J. Automobile Eng., 223 (2009), pp. 189-202
[Carrera-Akutain et al., 2006]
X. Carrera-Akutain, J.V. nolas, J. Savall, J. Biera.
A Parametric Damper Model Validated on a Track.
Int J Heavy Vehicle Syst, 13 (2006), pp. 145-163
[Çesmeci and Engin, 2010]
S. Çesmeci, T. Engin.
Modeling and Testing of a Field-Controllable Magneto-Rheological Fluid Damper.
Int J of Mechanical Sciences, 52 (2010), pp. 1036-1046
[Choi et al., 2001]
S.-B. Choi, S.-K. Lee, Y.-P. Park.
A Hysteresis Model for Field-Dependent Damping Force of a MagnetoRheological Damper.
J of Sound and Vibration, 245 (2001), pp. 375-383
[Codeca et al., 2008]
Codeca, F., S.M. Savaresi, Spelta, C., Montiglio, M., Leluzzi, M., 2008. Identification of An Electro-Hydraulic Controllable Shock Absorber Using Black-Block Non-Linear Models. In: 17th IEEE Int Conf on Control Applications Part of IEEE Multi-conf on Syst and Control, USA. pp. 462-467.
[Coleman and Li, 1996]
T.F. Coleman, Y. Li.
An Interior,Trust Region Approach for Nonlinear Minimization Subject to Bounds.
SIAM J on Optimization, 6 (1996), pp. 418-445
[Dixon, 2008]
J.C. Dixon.
The Shock Absorber Handbook.
Wiley-PEPublishing, (2008),
[Duym, 1997]
Duym, S., 1997. An Alternative Force State Map for Shock Absorbers. IMechE Proc Instn Mech Engrs Part D 211, 175-179.
[Duym, 2000]
S. Duym.
Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics.
Vehicle Systems Dynamics, 33 (2000), pp. 261-285
[Guo et al., 2006]
S. Guo, S. Yang, C. Pan.
Dynamical Modeling of Magneto-rheological Damper Behaviors. Int. Mater.
Sys. and Struct., 17 (2006), pp. 3-14
[Heo et al., 2003]
S.J. Heo, K. Park, S.H. Son.
Modelling of Continuously Variable Damper for Design of Semi-Active Suspension Systems.
Int J of Vehicle Design, 1 (2003), pp. 41-57
[Hong et al., 2002]
K.S. Hong, H.C. Sohn, J.K. Hedrick.
Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning. J. Dyn. Sys., Meas., Control.
, 124 (2002), pp. 158-167
[Joarder, 2003]
Joarder, M.N., 2003. Influence of Nonlinear Asymmetric Suspension Properties on the Ride Characteristics of Road Vehicle. Master's thesis, Concordia University, Canada.
[Kwok et al., 2006]
N.M. Kwok, Q.P. Ha, T.H. Nguyen, J. Li, B. Samali.
A Novel Hysteretic Model for Magneto-Rheological Fluid Dampers and Parameter Identification using Particle Swarm Optimization. Sensors and Actuators A: Physical.
, 132 (2006), pp. 441-451
[Ma et al., 2007]
X.Q. Ma, S. Rakheja, C.Y. Su.
Development and Relative Assessments of Models for Characterizing the Current Dependent Hysteresis Properties of MagnetoRheological Fluid Dampers.
J of Intelligent Material Systems and Structures, 24 (2007), pp. 487-502
[Rakheja and Sankar, 1985]
S. Rakheja, S. Sankar.
Vibration and Shock Isolation Performance of a Semi-Active On-Off Damper. J of Vibration, Acoustics.
Stress and Reliability in Design, 107 (1985), pp. 384-403
[Savaresi et al., 2005a]
S. Savaresi, S. Bittanti, M. Montiglio.
Identification of Semi-Physical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control.
Automatica, 41 (2005), pp. 113-127
[Savaresi et al., 2005b]
Savaresi, S., Bittanti, S., Montiglio, M., 1 2005b. Identification of Semi-Physical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control. Automatica, 41 (1), 113-127.
[Savaresi et al., 2003]
Savaresi, S., Silani, E., Bittanti, S., Porciani, N., 2003. On Performance Evaluation Methods and Control Strategies for Semi-Active Suspension Systems. In: The 42nd IEEE Conf on Decision and Control. USA, pp. 2264-2269.
[Savaresi and Spelta, 2007]
Savaresi, S., Spelta, C., July 2007. Mixed Sky-Hook and ADD: Approaching the Filtering Limits of a Semi-Active Suspension. J. Dyn. Sys., Meas., Control 129 (4), 382-392.
[Sims et al., 2004]
N.D. Sims, N.J. Holmes, R. Stanway.
A Unified Modeling and Model Updating Procedure for ElectroRheological and MagnetoRheological Vibration Dampers.
Smart Mater Structs, 13 (2004), pp. 100-121
[Voronoi, 1908]
G. Voronoi.
Nouvelles Applications des Parametres Continus a la Theorie des formes Quadratiques.
J für die Reine und Angewandte Mathematik, 133 (1908), pp. 97-178
[Wang and Kamath, 2006]
L.X. Wang, H. Kamath.
Modelling Hysteretic Behaviour in MR Fluids and Dampers using Phase-Transition Theory.
Smart Mater. Struct., 15 (2006), pp. 1725-1733
[Warner, 1996]
Warner, B., 1996. An Analytical and Experimental Investigation of High Performance Suspension Dampers. Ph.D. thesis, Concordia University, Canada.
[Wright, 1995]
Wright, M.H., 1995. Direct Search Methods: Once Scorned, Now Respectable. In: Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis.
[Yonaba et al., 2010]
H. Yonaba, F. Anctil, V. Fortin.
Comparing Sigmoid Transfer Functions for Neural Network Multistep Ahead Streamflow Forecasting.
J of Hydrologic Eng, 15 (2010), pp. 275-283
Opciones de artículo
Herramientas