Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3
Información de la revista
Vol. 14. Núm. 4.
Páginas 446-454 (Octubre - Diciembre 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
2323
Vol. 14. Núm. 4.
Páginas 446-454 (Octubre - Diciembre 2017)
Open Access
Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3
Sünter-Clare Algorithm Implementation in a 3x3 Matrix Converter
Visitas
2323
Eliher A. Ortiz Colína, Ilver H. Hernández Gonzáleza, Jaime J. Rodriguez Rivasa,*, Oscar Carranza Castilloa,b, Ruben Ortega Gonzáleza,b, Roberto Morales Caporalc
a Instituto Politécnico Nacional, ESIME Zacatenco, UP. Adolfo López Mateo, Edificio Z4, 1er piso, Col. Lindavista, CP. 07738, Ciudad de México, México
b Instituto Politécnico Nacional, ESCOM, Av Juan de Dios Batiz, Col. Lindavista, ESIME Zacatenco, CP. 07738, Ciudad de México, México
c Instituto Tecnológico de Apizaco, Tlaxcala, México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este trabajo se presenta la implementación digital del algoritmo de modulación de Sünter-Clare, para un convertidor matricial de tres hilos de 7.5 kVA. Este algoritmo es usado para calcular los ciclos de trabajo en un convertidor matricial 3x3, con lo que se generan tensiones de salida con amplitud y frecuencia constantes. El algoritmo de modulación de Sünter-Clare recalcula los tiempos y trayectorias de conmutación cada período de muestreo, con el objetivo de compensar las variaciones de amplitud y de frecuencia de las tensiones de entrada. Este algoritmo se ejecuta en cada muestreo y está en función de la tensión trifásica de entrada y de la tensión de referencia de salida, resultando adecuado para controles en lazo cerrado, cuando las señales de amplitud y de frecuencia de las tensiones de entrada son variables en el tiempo, como ocurre en los sistemas de generación de energía eléctrica a velocidad variable, que utilizan la energía del viento como fuente primaria de energía. El sistema de control para el trabajo experimental, además de la tarjeta del convertidor matricial, está compuesto por una tarjeta de arreglos de compuertas programable (FPGA) y por un procesador digital de señales (DSP) con una tarjeta de interfaz gráfica.

Palabras clave:
Convertidor matricial
algoritmo de modulación Sünter-Clare
distorsión total armónica
Abstract

This paper presents the direct and easy way to implement digitally a Sünter-Clare modulation algorithm for a 7.5 KVA, three-wires, matrix converter. This modulation algorithm is used to calculate 3x3 matrix converter duty cycles to produce constant output voltage and frequency signals. The Sünter-Clare modulation algorithm recalculates switching patterns and switching times every sampling period in order to compensate the input voltage and frequency variations. This algorithm is defined in terms of the three-phase input and the output reference voltages at each sampling instant and is convenient for closed loop operations when the input voltage and frequency are variable in time as in the variable speed wind generation system. The experimental control setup is comprised of a field programmable gate array board, a digital signal processor and a graphics interface board.

Keywords:
Matrix converter
Sünter-Clare modulation algorithm
Total Harmonic Distortion
Referencias
[Altun and Sünter, 2003]
H. Altun, S. Sünter.
Matrix converter induction motor drives: modeling, simulation and control.
Journal of Electrical Eng., 86 (2003), pp. 25-33
[Arevalo et al., 2010]
S. Arevalo, P. Zanchetta, P.W. Wheeler, A. Trentin, L. Empringham.
Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing.
IEEE Trans. on Ind. Elect., 57 (2010), pp. 2076-2084
[Barater et al., 2013]
Barater, D., Buticchi, G., Concari, C., Concari, L., Franceschini, G., 2013. Single-phase matrix converter for active power filter applications. 39th Annual Conference of the IEEE Industrial Electronics Society (IECON’2013).
[Burany, 1989]
N. Burany.
Safe control of four-quadrant switches.
Industry Applications Society Annual Meeting, 1 (1989), pp. 1190-1194
[Bucknall and Ciaramella, 2010]
R.W.G. Bucknall, K.M. Ciaramella.
On the conceptual design and performance of a matrix converter for marine electric propulsion.
IEEE Trans. on Power Elect., 25 (2010), pp. 1497-1508
[Chai et al., 2016]
M. Chai, D. Xiao, R. Dutta, J.E. Fletcher.
Space vector PWM techniques for three-to-five-phase indirect matrix converter in the overmodulation region.
IEEE Trans. on Ind. Elect., 63 (2016), pp. 550-561
[Cardenas et al., 2014]
R. Cardenas, R. Peña, P. Wheeler, J. Clare, C. Juri.
Control of a matrix converter for the operation of autonomous systems.
Renewable Energy, ELSEVIER, 43 (2014), pp. 343-353
[Casadei et al., 2002]
D. Casadei, G. Serra, A. Tani, L. Zarri.
Matrix Converter Modulation Strategies: A new general approach based on space-vector representation of the switch state.
IEEE Trans. on Ind. Elect., 49 (2002), pp. 370-381
[Empringham et al., 1998]
L. Empringham, P.W. Wheeler, J.C. Clare.
Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques.
29th Annual IEEE Power Electronics Specialists Conference (PESC). Vol.1, pp. 707-713
[Guo et al., 2014]
Guo, Y., Deng, W., Zhu, J., Blaabjerg, F., 2014. An Improved 4-step Commutation Method Application for Matrix Converter. 17th International Conference on Electrical Machines and Systems (ICEMS’2014).
[Gupta et al., 2014]
R.A. Gupta, R. Kumar, V. Sangtani.
Direct torque controlled matrix converter fed induction motor drive.
2014 International Conference on Circuit Power and Computing Technologies (ICCPCT), (2014), pp. 698-703
[Hongwu et al., 2009]
S. Hongwu, L. Hua, W. Xingwei, Y. Limin.
Damped input filter design of matrix converter.
International Conference on Power Electronics and Drive Systems (PEDS 2009), (2009), pp. 672-677
[Huber et al., 1992]
L. Huber, D. Borojevic, N. Burany.
Analysis, design and implementation of the space-vector modulator for forced-commutated cycloconvertors.
IEE Proceeding B: Electric Power Applications, 139 (1992), pp. 103-113
[Hyosung and Seung-Ki, 2009]
K. Hyosung, S. Seung-Ki.
Analysis on output LC filters for PWM inverters.
IEEE 6th International Power Electronics and Motion Control Conference (IPEMC’2009), pp. 384-389
[Jayasinghe and Vilathgamuwa, 2011]
S.D.G. Jayasinghe, D.M. Vilathgamuwa.
A modular matrix converter for transformer-less PMSG wind generation system.
2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), pp. 474-479
[Kolar et al., 2002]
J.W. Kolar, M. Baumann, F. Schafmeister, H. Ertl.
Novel three-phase. AC-DC-AC sparse matrix converter.
The IEEE Seventeenth Annual Applied Power Electronics Conference and Exposition, (APEC), 2 (2002), pp. 777-791
[Kouro et al., 2009]
S. Kouro, P. Cortes, R. Vargas, U. Ammann, Rodriguez.
Model predictive control, a simple and powerful method to control power converters.
IEEE Trans. Ind. Electron., 56 (2009), pp. 1826-1838
[Lee et al., 2010]
M.Y. Lee, P. Wheeler, C. Klumpner.
Space-vector modulated multilevel matrix converter.
IEEE Trans. on Ind. Elect., 57 (2010), pp. 3385-3394
[Lillo and de, 2006]
Lillo, de L., 2006. A matrix converter drive system for aircraft rudder electro-mechanical actuator. Ph. D. Thesis, University of Nottingham, England.
[Nguyen and Lee, 2016]
T.D. Nguyen, H.H. Lee.
Development of a three-to-five-phase indirect matrix converter with carrier-based PWM based on space-vector modulation analysis.
IEEE Trans. on Ind. Elect., 63 (2016), pp. 13-24
[Oyama et al., 1989]
J. Oyama, T. Higuchi, E. Yamada, T. Koga, T. Lipo.
New control strategy for matrix converter.
20th. Annual IEEE Power Elect. Specialist Conference Vol. 1, pp. 360-367
[Pinto and Silva, 2001]
S.F. Pinto, J.F. Silva.
Input filter design for sliding mode controlled matrix converters.
32 Annual Power Electronics Specialists Conference (PESC’2001), 2 (2001), pp. 648-653
[Prabhakar et al., 2014]
Prabhakar, K.K., Singh, A.K., Reddy, C.U., Kumar, P., 2014. Drive system for electric vehicle power train application using DC to AC matrix converter. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES’ 2014).
[Ratanapanachote et al., 2006]
S. Ratanapanachote, H.J. Cha, P.N. Enjeti.
A digitally controlled switch mode power supply based on matrix converter.
IEEE Trans. on Power Elect., 21 (2006), pp. 124-130
[Reyes et al., 2008]
E. Reyes, R. Peña, R. Cárdenas, J. Clare, P. Wheeler, R.B. Gimenez.
A topology for multiple generation system with doubly fed induction machines and indirect matrix converter.
IEEE International Symposium on Industrial Electronics, (2008), pp. 2463-2468
[Robles et al., 2015]
E.L. Robles, J.J. Rodríguez, E. Peralta, O. Carranza.
Voltage regulation of a matrix converter with balanced and unbalanced three-phase loads.
Journal of Applied Research and Technology, 13 (2015), pp. 510-522
[Rodriguez et al., 2016]
J.J. Rodriguez, R.M. Caporal, E. Peralta, O. Carranza, R. Ortega.
Optimal Venturini modulation for a three-phase four-wire matrix converter.
IEEE Latin America Transactions, 14 (2016), pp. 2
[Rodriguez et al., 2012]
J. Rodriguez, M. Rivera, J.W. Kolar, P.W. Wheeler.
A review of control and modulation methods for Matrix Converters.
IEEE Trans. on Ind. Elect., 59 (2012), pp. 58-70
[Roy and April, 1989]
Roy, G., April, G.E., 1989. Cycloconverter operation under a new scalar control algorithm. 20th Annual IEEE Power Electron. Spec. Conf., Vol. 1, pp.
[Sun et al., 2007]
K. Sun, L. Huang, K. Matsuse.
An improved matrix converter fed induction motor vector control drive with output voltage error cancellation.
Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, (2007), pp. 250-255
[Sun et al., 2016]
Y. Sun, W. Xiong, M. Su, X. Li, H. Dan, J. Yang.
Carrier-based modulation strategies for multimodular matrix converters.
IEEE Trans. on Ind. Elect., 63 (2016), pp. 1350-1361
[Vargas et al., 2010]
R. Vargas, U. Ammann, B. Hudoffsky, J. Rodriguez, P. Wheeler.
Predictive torque control of an induction machine fed by a matrix converter with reactive input power control.
IEEE Trans. on Power Electron., 25 (2010), pp. 1426-1438
[Venturini, 1980]
Venturini, M., 1980. A new sine wave in sine wave out conversion technique which eliminate reactive elements. Seventh National Solid-State Power Conversion Conference (POWERCON 7), pp. E3_1-E3_5.
[Wheeler, 1999]
P.W. Wheeler.
Matrix converters study final report.
University of Nottingham, School of Electrical and Electronic Engineering, (1999),
Chapter 1
[Wheeler et al., 2002]
P.W. Wheeler, J. Rodríguez, J.C. Clare, L. Empringham, A. Weinstein.
Matrix converters: a technology review.
IEEE Trans. on Ind. Elect., 49 (2002), pp. 2
[Wheeler et al., 2004]
Wheeler, P.W., Clare, J.C., Apap, M., Empringham, L., Lilo, L. de Bradley, K., Whitley, C., Towers, G., 2004. An electro-hydrostatic aircraft actuator using a matrix converter permanent magnet motor drive. 2nd International Conference on Power Electronics, Machines and Drives, (PEMD), Vol. 2, pp. 464-468.
[Yamasaki et al., 2012]
M. Yamasaki, K. Sakaki, K. Matsuse.
Characteristics of vector control two induction motor drives fed by matrix converter.
15th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-5
[Yoon and Sul, 2006]
Y.D. Yoon, S.K. Sul.
Carrier-based modulation technique for matrix converter.
IEEE Trans. on Power Elect., 21 (2006), pp. 1691-1703
Opciones de artículo
Herramientas