El control visual es una disciplina de gran actualidad dentro del control de robots, y dentro de ésta, los algoritmos de predicción se usan para estimar la localización de objetos o características visuales proporcionadas por un sensor con retardo (cámara). Algunos de los algoritmos más utilizados son: el filtro de Kalman; los filtros alpha-beta/gamma (αβ/γ); el AKF; el SKF; etc. El mayor problema de algunos de ellos es conseguir que su implementación permita trabajar en aplicaciones con fuertes restricciones temporales o de tiempo real. En este artículo se presenta un nuevo método de predicción, denominado FMF, basado en la fusión o combinación borrosa de varios filtros, y por tanto con un alto coste computacional. En el artículo se estudia a través de simulación la mejora obtenida con la predicción del FMF respecto a los filtros individuales, lo que justifica su interés. Así mismo, se desarrolla su implementación de tiempo real en una FPGA empleando técnicas de paralelización y segmentado. La viabilidad, robustez y fiabilidad del algoritmo propuesto se ha comprobado mediante una aplicación experimental de control visual.
El factor de impacto mide la media del número de citaciones recibidas en un año por trabajos publicados en la publicación durante los dos años anteriores.
© Clarivate Analytics, Journal Citation Reports 2025
SJR es una prestigiosa métrica basada en la idea de que todas las citaciones no son iguales. SJR usa un algoritmo similar al page rank de Google; es una medida cuantitativa y cualitativa al impacto de una publicación.
Ver másSNIP permite comparar el impacto de revistas de diferentes campos temáticos, corrigiendo las diferencias en la probabilidad de ser citado que existe entre revistas de distintas materias.
Ver más
