Este artículo describe y compara diferentes variantes de la detección de fallos mediante el análisis de componentes principales (PCA). PCA es una técnica estadística multivariante. Se describe como se puede diseñnar un sistema de detección de fallos mediante PCA y los estadísticos que se pueden calcular para construir los gráficos de control que permiten monitorizar el estado del proceso. Los distintos métodos basados en PCA que se comparan en este artículo son: PCA adaptativo (APCA), PCA multi-escala (MSPCA), PCA pesado exponencialmente (EWPCA), PCA con análisis externo (PCAEA) con su variante no lineal y PCA no lineal NLPCA. Para el estudio comparativo se van a valorar diferentes parámetros, tanto cualitativos como cuantitativos.
El factor de impacto mide la media del número de citaciones recibidas en un año por trabajos publicados en la publicación durante los dos años anteriores.
© Clarivate Analytics, Journal Citation Reports 2025
SJR es una prestigiosa métrica basada en la idea de que todas las citaciones no son iguales. SJR usa un algoritmo similar al page rank de Google; es una medida cuantitativa y cualitativa al impacto de una publicación.
Ver másSNIP permite comparar el impacto de revistas de diferentes campos temáticos, corrigiendo las diferencias en la probabilidad de ser citado que existe entre revistas de distintas materias.
Ver más
