Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control de una antena sensora mediante la técnica de Input Shaping no lineal
Información de la revista
Vol. 13. Núm. 2.
Páginas 162-173 (Abril - Junio 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3682
Vol. 13. Núm. 2.
Páginas 162-173 (Abril - Junio 2016)
Open Access
Control de una antena sensora mediante la técnica de Input Shaping no lineal
Motion Control of a Sensing Antenna with a Nonlinear Input Shaping Technique
Visitas
3682
Daniel Feliu-Talegon, Vicente Feliu-Batlle
Autor para correspondencia
Vicente.Feliu@uclm.es

Autor para correspondencia.
, Claudia F. Castillo-Berrio
Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Campus Universitario s/n, Ciudad Real, 13071, Spain
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En la actualidad se usan barras flexibles junto a sensores de fuerza y par para detectar obstáculos en robótica móvil. Además se utilizan estos dispositivos para la detección de superficies y el reconocimiento de objetos. Estos dispositivos, llamados antenas sensoras, representan una estrategia de detección activa en la cual un sistema con servomotores mueve la antena hasta que golpea con un objeto. En ese instante, la información obtenida de los ángulos de los motores y la medida de los sensores de fuerza y par permiten saber la posición del punto de impacto con el objeto y suministran información valiosa sobre su superficie. Para mover la antena de manera rápida y precisa, este artículo propone un nuevo sistema de control en cadena abierta. La estrategia de control para reducir las vibraciones de la antena está basada en la técnica Input Shaping (IS). La antena realiza movimientos libres tanto azimutales como cenitales. Sin embargo, el movimiento cenital es claramente no lineal debido al efecto de la gravedad, el cual previene el uso de técnicas IS lineales. Por tanto, en este artículo se desarrolla un nuevo IS no lineal que tiene en cuenta el término de la gravedad. Los experimentos muestran la mejora en la reducción de la vibración del extremo para movimientos libres de la antena gracias a la técnica propuesta.

Palabras clave:
Sistema de control
sensor de contacto
reducción de la vibración
barra flexible
par de acoplamiento
frecuencias angulares
antena.
Abstract

Flexible links combined with force and torque sensors can be used to detect obstacles in mobile robotics, as well as for surface and object recognition. These devices, called sensing antennae, perform an active sensing strategy in which a servomotor system moves the link back and forth until it hits an object. At this instant, information of the motor angles combined with force and torque measurements allow calculating the positions of the hitting points, which are valuable information about the object surface. In order to move the antenna fast and accurately, this article proposes a new open loop control for driving this flexible link based sensor. The control strategy is based on an (IS) Input Shaping technique, in order to reduce link vibrations. The antenna performs free azimuthal and vertical movements. However, the vertical movement is clearly non-linear due to the gravity effect, which prevents the use of standard linear IS techniques. Then a new nonlinear IS has been developed in this article which includes a linearization term of the gravity. Experiments have shown the improvements attained with this technique in the accurate vibration free motion of our antenna.

Keywords:
Motion control
vibration suppression
flexible-link
coupling torque
angular frequencies
antenna.
Texto completo
Referencias no citadas

[1–28].

Referencias
[1]
E. Arabzadeh, R. Petersen.
Encoding of a whisker vibration by a rat barrel cortex neurons: Implications for texture discrimination.
Journal of Neuroscience, 23 (2003), pp. 9146-9154
[2]
Bebek, O., & Cenk M. (2007). Whisker sensor design for three dimensional position measurement in robotic assisted beating heart surgery. In Robotics and Automation, 2007 IEEE International Conference on, 225-231.
[3]
Bellezza, F., Lanari, L.L. y Ulivi, G. (1990). Exact modelling of the flexible slewing link. In Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on, 734-804.
[4]
Castillo, C.F., Castillo, F.J. y Feliu V (2011). Inverse dynamics feed forward based control of 2 degrees of freedom whisker sensor. In Mechatronics, 2011 IEEE International Conference on 684-689.
[5]
C.F. Castillo, V. Feliu, F.J. Castillo-Garcia.
Experimental validation of a 2 degrees of freedom whisker sensor dynamic model.
IFAC World Congress, 18 (2011), pp. 3148-3152
[6]
C.F. Castillo, S.N. Engin, V. Feliu.
Design, dynamic modelling and experimental validation of a 2DOF flexible antenna sensor.
International Journal of Systems Science, 45 (2014), pp. 714-727
[7]
C.F. Castillo-Berrio, V. Feliu-Batlle.
Vibration-free position control for a two degrees of freedom flexible-beam sensor.
Mechatronics, 27 (2015), pp. 1-12
[8]
T.N. Clements, C.D. Rahn.
Three-dimensional contact imaging with an actuated whisker.
Robotics, IEEE Transactions on, 22 (2006), pp. 844-848
[9]
Talegon, D.F., Castillo, C.F. y Feliu V. (2013). Improving the motion of a sensing antenna by using an input shaping technique. In Robot 2013: First Iberian Robotics Conference: Advances in Robotics, 253, 199-214.
[10]
D. Feliu-Talegón, C.F. Castillo-Berrio, V. Feliu-Batlle.
A nonlinear input shaping technique for motion control of a sensing antenna.
IFAC World Congress, 19 (2014), pp. 4733-4738
[11]
V. Feliu, K.S. Rattan, M.B. Brown.
Modeling and control of a single link flexible arm with lumped masses.
Journal of Dynamic Systems, Measurement, and Control, 114 (1992), pp. 59-69
[12]
Fend, M., Yokoi, H. y Pfeifer, R. (2004). Development of a whisker sensor system and simulation of active whisking for agent navigation. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RS J International Conference on, 607-612).
[13]
Grant, R.A., Itskov, P.M., Towal, R.B. y Prescott, T.J. (2014). Active touch sensing: finger tips, whiskers, and antennae. Frontiers in behavioral neuroscience, 8.
[14]
M. Kaneko, N. Kanayama, T. Tsuji.
Active antenna for contact sensing.
Robotics and Automation, IEEE Transactions on, 14 (1998), pp. 278-291
[15]
Kaneko, M. y Tsuji, T. (2000). A whisker tracing sensor with 5 μm sensitivity. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, 4, 3907-3912.
[16]
Kaneko, M., Kanayama, N. y Tsuji, T. (1996). Vision based active antenna. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, 3, 2555-60.
[17]
D. Kim, R. Moller.
Biomimetic whiskers for shape recognition.
Robotics and Autonomous Systems, 55 (2007), pp. 229-243
[18]
M.J. Pearson, A.G. Pipe, C. Melhuish, B. Mitchinson, T.J. Prescott.
Whiskerbot: a robotic active touch system modeled on the rat whisker sensory system.
Adaptive Behavior, 15 (2007), pp. 223-240
[19]
M.J. Pearson, B. Mitchinson, J. Welsby, T. Pipe, T.J. Prescott.
Scratchbot: Active tactile sensing in a whiskered mobile robot.
From Animals to Animats, 11 (2010), pp. 93-103
[20]
E. Pereira, J.R. Trapero, I.M. Diaz, V. Feliu.
Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique.
Automatica, 45 (2009), pp. 1046-1051
[21]
Russell, R.A. (1992). Using tactile whiskers to measure surface contours. In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on, 1295-1299.
[22]
Russell, R.A. y Wijaya, J. (2003). Object location and recognition using whisker sensors. In Australasian Conference on Robotics and Automation on, 761-768.
[23]
N.C. Singer, W.C. Seering.
Preshaping command inputs to reduce system vibration.
Journal of Dynamic Systems, Measurement, and Control, 112 (1990), pp. 76-82
[24]
J.H. Solomon, M.J. Hartmann.
Robotic whiskers used to sense features.
Nature, 443 (2006),
[25]
Tsujimura, T. y Yabuta, T.A. (1992). A tactile sensing method employing force torque information through insensitive probes. In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on, 1315-1320.
[26]
Ueno, N. y Kaneko, M. (1995). On a new contact sensing strategy for dynamic active antenna. In Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on, 1, 1120-1125.
[27]
Ueno, N., Kaneko, M. y Svinin, M. (1996). Theoretical and experimental investigation on dynamic active antenna. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, 4, 3557-3563.
[28]
Zhao, H. y Rahn, C.D. (2007). Repetitive contact imaging. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2115-2123. American Society of Mechanical Engineers.
Opciones de artículo
Herramientas