Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control en red basado en eventos: de lo centralizado a lo distribuido
Información de la revista
Vol. 14. Núm. 1.
Páginas 16-30 (Enero - Marzo 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
1347
Vol. 14. Núm. 1.
Páginas 16-30 (Enero - Marzo 2017)
DOI: 10.1016/j.riai.2016.09.007
Open Access
Control en red basado en eventos: de lo centralizado a lo distribuido
Event-based control for networked systems: From centralized to distributed approaches
Visitas
...
María Guinaldo
Autor para correspondencia
mguinaldo@dia.uned.es

Autor para correspondencia.
, José Sánchez, Sebastián Dormido
Departamento de Informática y Automática, UNED, Juan del Rosal 16, 28040 Madrid, España
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los sistemas de control en red (SCR) son aquellos en los que los diferentes elementos de un lazo de control (sensores, actuadores y controladores) se encuentran espacialmente distribuidos y la transmisión entre ellos tiene lugar a travón de informaciés de un canal de comunicación o red. La reducción de la cantidad de información transmitida juega un papel importante en el desempeño de estos sitemas, y reglas de comunicación no convencionales como el control basado en eventos, se han demostrado efectivas. En este artículo se revisan algunas de estas estrategias, centrándose en primer lugar en los SCR centralizados, para posteriormente estudiar esquemas de control distribuido, aplicados a sistemas de gran escala. Finalmente, algunos de los resultados teóricos se aplican al control de formaciones en un sistema de experimentación real.

Palabras clave:
Control en red
control basado en eventos
control distribuido
sistemas de gran escala
sistemas multi-agente
control de formaciones
robots móviles.
Abstract

Networked control systems (NCSs) are spatially distributed systems in which sensors, actuators and controllers exchange information through a communication channel or network. The reduction in the amount of transmitted information has a relevant impact over the system's performance. In this regard, non-conventional communication rules, such as the event-based control, have been demonstrated to be effective. In this paper, some of these strategies are reviewed. We first focus on centralized NCSs, and then the distributed control for large-scale systems is studied. Finally, some of the results are applied to the formation control problem and implemented over an experimental setup.

Keywords:
Networked control
event-based control
distributed control
large-scale system
multi-agent system
formation control
mobile robot
Texto completo
Referencias no citadas

Anta and Tabuada, 2010a, Anta and Tabuada, 2010b, Araujo, 2014, Arzén, 1999, Baseggio et al., 2010, Bolognani and Zampieri, 2011, Cervin et al., 2002, Cervin et al., 2011, Cuenca et al., 2011, Dai et al., 2010, De Persis et al., 2013, Donkers et al., 2011, Donkers et al., 2012, Dormido et al., 2008, Ellis, 1959, Epstein et al., 2007, Fabregas et al., 2015, Farhangi, 2010, Fax and Murray, 2004, Garcia and Antsaklis, 2011, Greco et al., 2011, Guinaldo, 2013, Guinaldo et al., 2013a, Guinaldo et al., 2013b, Guinaldo et al., 2011, Guinaldo et al., 2014, Guinaldo et al., 2016, Gupta, 2009, Heemels and van de Wouw, 2010, Heemels and Donkers, 2013, Heemels et al., 2013, Heemels et al., 1999, Heemels et al., 2008, Henriksson and Cervin, 2005, Hespanha and Naghshtabrizi, 2007, Hinterseer et al., 2008, Kim et al., 2011, Kumar et al., 2015, Lehmann and Lunze, 2011, Lehmann and Lunze, 2012, Lincoln and Bernhardsson, 2002, Lunze and Lehmann, 2010, Marti et al., 2004, Martini et al., 2013, Mazo et al., 2009, Meng et al., 2004, Millán et al., 2008, Millán et al., 2012, Millán et al., 2014, Miskowicz, 2006, Montestruque and Antsaklis, 2003, Naghshtabrizi and Hespanha, 2006, Naghshtabrizi et al., 2008, Nešić and Teel, 2004, Olfati-Saber et al., 2007, Quanser, 2016, Quevedo et al., 2008, Åström and Bernhardsson, 2003, Sandee, 2006, Seyboth et al., 2013, Sinopoli et al., 2004, Stocker and Lunze, 2013, Su and Huang, 2012, Tabuada, 2007, Velasco et al., 2003, Walsh and Ye, 2001, Wang et al., 2010, Wang and Lemmon, 2008, Wang and Lemmon, 2011, Zhang et al., 2011, Zhang and Hristu-Varsakelis, 2006, Zhao et al., 2009 and Zhong and Cassandras, 2011.

Referencias
[Anta and Tabuada, 2010a]
A. Anta, P. Tabuada.
On the minimum attention and anytime attention problems for nonlinear systems.
49th IEEE Conference on Decision and Control, pp. 3234-3239
[Anta and Tabuada, 2010b]
A. Anta, P. Tabuada.
To sample or not to sample: self-triggered control for nonlinear systems.
IEEE Transactions on Automatic Control, 55 (2010 b), pp. 2030-2042
[Araujo, 2014]
Araujo, J., 2014. Design, implementation and validation of resource-aware and resilient wireless networked control systems. Ph.D. thesis, KTH Royal Institute of Technology.
[Arzén, 1999]
K. Arzén.
A simple event-based pid controller.
IFAC World Congress, (1999), pp. 423-428
[Baseggio et al., 2010]
M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, L. Schenato.
Distributed perimeter patrolling and tracking for camera networks.
49th IEEE Conference on Decision and Control, pp. 2093-2098
[Bolognani and Zampieri, 2011]
S. Bolognani, S. Zampieri.
A gossip-like distributed optimization algorithm for reactive power flow control.
IFAC World Congress, (2011), pp. 5700-5705
[Cervin et al., 2002]
A. Cervin, J. Eker, B. Bernhardsson, K. -E. Årzé.
Feedback–en feedforward scheduling of control tasks.
Real-Time Systems, 23 (2002), pp. 25-53
[Cervin et al., 2011]
A. Cervin, M. Velasco, P. Martí, A. Camacho.
Optimal online sampling period assignment: Theory and experiments.
Control Systems Technology, IEEE Transactions on, 19 (2011), pp. 902-910
[Cuenca et al., 2011]
A. Cuenca, P. García, P. Albertos, J. Salt.
A non-uniform predictor-observer for a networked control system.
International Journal of Control, Automation and Systems, 9 (2011), pp. 1194-1202
[Dai et al., 2010]
S.-L. Dai, H. Lin, S.S. Ge.
Scheduling-and-control codesign for a collection of networked control systems with uncertain delays.
Control Systems Technology, IEEE Transactions on, 18 (2010), pp. 66-78
[De Persis et al., 2013]
C. De Persis, R. Sailer, F. Wirth.
Parsimonious event-triggered distributed control: A zeno free approach.
Automatica, 49 (2013), pp. 2116-2124
[Donkers et al., 2011]
M. Donkers, W. Heemels, N. van de Wouw, L. Hetel.
Stability analysis of networked control systems using a switched linear systems approach.
IEEE Transactions on Automatic Control, 56 (2011), pp. 2101-2115
[Donkers et al., 2012]
Donkers, M., Tabuada, P., Heemels, W., 2012. Minimum attention control for linear systems: A linear programming approach. Discrete Event Dynamic Systems Theory and ApplicationsDOI 101007/s10626-012-0155-x.
[Dormido et al., 2008]
S. Dormido, J. Sánchez, E. Kofman.
Muestreo, control y comunicación basados en eventos.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 5 (2008), pp. 5-26
[Ellis, 1959]
P. Ellis.
Extension of phase plane analysis to quantized systems.
IRE Transactions on Automatic Control, 4 (1959), pp. 43-54
[Epstein et al., 2007]
M. Epstein, L. Shi, S. Di Cairano, R.M. Murray.
Control over a network: Using actuation buffers to reduce transmission frequency.
European Control Conference,
[Fabregas et al., 2015]
E. Fabregas, G. Farias, S. Dormido-Canto, M. Guinaldo, J. Sánchez, S. Dormido-Bencomo.
Platform for teaching mobile robotics.
Journal of Intelligent & Robotic Systems, (2015), pp. 1-13
[Farhangi, 2010]
H. Farhangi.
The path of the smart grid.
Power and energy magazine, IEEE, 8 (2010), pp. 18-28
[Fax and Murray, 2004]
J. Fax, R. Murray.
Information flow and cooperative control of vehicle formations.
IEEE Transactions on Automatic Control, 49 (2004), pp. 1465-1476
[Garcia and Antsaklis, 2011]
E. Garcia, P.J. Antsaklis.
Model-based event-triggered control with time-varying network delays.
50th IEEE Conference on Decision and Control, pp. 1650-1655
[Greco et al., 2011]
L. Greco, D. Fontanelli, A. Bicchi.
Design and stability analysis for anytime control via stochastic scheduling.
IEEE Transactions on Automatic Control, 56 (2011), pp. 571-585
[Guinaldo, 2013]
Guinaldo, M., 2013. Contributions to networked and event-triggered control of linear systems. Ph.D. thesis, ETSI Informatica, UNED.
[Guinaldo et al., 2013a]
M. Guinaldo, D. Dimarogonas, K. Johansson, J. Sánchez, S. Dormido.
Distributed event-based control strategies for interconnected linear systems.
IET Control Theory & Applications, 7 (2013 a), pp. 877-886
[Guinaldo et al., 2013b]
Guinaldo, M., Lehmann, D., Sanchez, J., Dormido, S., Johansson, K.H., 2013b. Reducing communication and actuation in distributed control systems. En: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE, pp. 5288-5293.
[Guinaldo et al., 2011]
M. Guinaldo, J. Sánchez, S. Dormido.
A co-design strategy of NCS for treacherous network conditions.
IET Control Theory & Applications, 5 (2011), pp. 1906-1915
[Guinaldo et al., 2014]
Guinaldo, M., Sanchez, J., Dormido, S., 2014. Anticipative control design for output measurement in internet-like networks. En: Control Conference (ECC), 2014 European. pp. 1193-1198.
[Guinaldo et al., 2016]
M. Guinaldo, J. Sánchez, S. Dormido.
Distributed adaptive control of linear multi-agent systems with event-triggered communications.
Applied Mathematics and Computation, 274 (2016), pp. 195-207
[Gupta, 2009]
V. Gupta.
On an anytime algorithm for control.
47th IEEE Conference on Decision and Control, pp. 6218-6223
[Heemels and van de Wouw, 2010]
W.P.M.H. Heemels, N. van de Wouw.
Networked Control Systems.
Springer-Verlag, (2010), pp. 203-253
[Heemels and Donkers, 2013]
W. Heemels, M. Donkers.
Model-based periodic event-triggered control for linear systems.
Automatica, 49 (2013), pp. 698-711
[Heemels et al., 2013]
W. Heemels, M. Donkers, A.R. Teel.
Periodic event-triggered control for linear systems.
Automatic Control, IEEE Transactions on, 58 (2013), pp. 847-861
[Heemels et al., 1999]
W.P.M.H. Heemels, R.J.A. Gorter, A. van Zijl, P.P.J. van den Bosch, S. Weiland, W.H.A. Hendrix, M.R. Vonder.
Asynchronous measurement and control: a case study on motor synchronization.
Control Engineering Practice, 7 (1999), pp. 1467-1482
[Heemels et al., 2008]
W.P.M.H. Heemels, J. Sandee, P. van den Bosch.
Analysis of event-driven controllers for linear systems.
International Journal of Control, 81 (2008), pp. 571-590
[Henriksson and Cervin, 2005]
Henriksson, D., Cervin, A., 2005. Optimal on-line sampling period assignment for real-time control tasks based on plant state information. En: Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on. pp. 4469-4474.
[Hespanha and Naghshtabrizi, 2007]
J.P. Hespanha, P. Y.X. Naghshtabrizi.
A survey of recent results in networked control systems.
Proceedings of the IEEE, 95 (2007), pp. 138-162
[Hinterseer et al., 2008]
P. Hinterseer, S. Hirche, S. Chaudhuri, E. Steinbach, M. Buss.
Perception-based data reduction and transmission of haptic data in telepresence and teleaction systems.
IEEE Transactions on Signal Processing, 56 (2008), pp. 588-597
[Kim et al., 2011]
H. Kim, H. Shim, J.H. Seo.
Output consensus of heterogeneous uncertain linear multi-agent systems.
Automatic Control, IEEE Transactions on, 56 (2011), pp. 200-206
[Kumar et al., 2015]
N. Kumar, J.-H. Lee, J. Rodrigues.
Intelligent mobile video surveillance system as a bayesian coalition game in vehicular sensor networks: learning automata approach.
Intelligent Transportation Systems, IEEE Transactions on, 16 (2015), pp. 1148-1161
[Lehmann and Lunze, 2011]
D. Lehmann, J. Lunze.
Extension and experimental evaluation of an event-based state-feedback approach.
Control Engineering Practice, 19 (2011), pp. 101-112
[Lehmann and Lunze, 2012]
D. Lehmann, J. Lunze.
Event-based control with communication delays and packet losses.
International Journal of Control, 85 (2012), pp. 563-577
[Lincoln and Bernhardsson, 2002]
B. Lincoln, B. Bernhardsson.
Lqr optimization of linear system switching.
Automatic Control, IEEE Transactions on, 47 (2002), pp. 1701-1705
[Lunze and Lehmann, 2010]
J. Lunze, D. Lehmann.
A state-feedback approach to event-based control.
Automatica, 46 (2010), pp. 211-215
[Marti et al., 2004]
P. Marti, C. Lin, S. Brandt, M. Velasco, J.M. Fuertes, et al.
Optimal state feedback based resource allocation for resource-constrained control tasks.
Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE International, pp. 161-172
[Martini et al., 2013]
Martini, M., Hewage, C.T., Nasralla, M., Smith, R., Jourdan, I., Rockall, T., 2013. 3-d robotic tele-surgery and training over next generation wireless networks. En: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE, pp. 6244-6247.
[Mazo et al., 2009]
Mazo Jr, M., Anta, A., Tabuada, P., 2009. On self-triggered control for linear systems: Guarantees and complexity. En: Control Conference (ECC), 2009 European. pp. 3767-3772.
[Meng et al., 2004]
C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, Z. Tian.
IEEE International Conference on Robotics and Automation. Vol. 1, (2004), pp. 819-823
[Millán et al., 2008]
P. Millán, I. Jurado, C. Vivas, F.R. Rubio.
Networked predictive control of systems with data dropouts.
47th IEEE Conference on Decisionand Control, pp. 2704-2709
[Millán et al., 2012]
P. Millán, L. Orihuela, G. Bejarano, C. Vivas, T. Aamo, F. Rubio.
Désign and application of suboptimal mixed H2/H controllers for networked control systems.
IEEE Transactions on Control Systems Technology, 20 (2012), pp. 1057-1065
[Millán et al., 2014]
P. Millán, L. Orihuela, I. Jurado, F.R. Rubio.
Formation control of autonomous underwater vehicles subject to communication delays.
IEEE Transactions on Control Systems Technology, 22 (2014), pp. 770-777
[Miskowicz, 2006]
M. Miskowicz.
Send-on-delta concept: an event-based data reporting strategy.
sensors, 6 (2006), pp. 49-63
[Montestruque and Antsaklis, 2003]
L.A. Montestruque, P. Antsaklis.
On the model-based control of networked systems.
Automatica, 39 (2003), pp. 1837-1843
[Naghshtabrizi and Hespanha, 2006]
P. Naghshtabrizi, J. Hespanha.
Anticipative and non-anticipative controller design for network control systems.
Networked Embedded Sensing and Control, 331 (2006), pp. 203-218
[Naghshtabrizi et al., 2008]
P. Naghshtabrizi, J.P. Hespanha, A.R. Teel.
Exponential stability of impulsive systems with application to uncertain sampled-data systems.
Systems & Control Letters, (2008), pp. 378-385
[Nešić and Teel, 2004]
D. Nešić, A.R. Teel.
Input-to-state stability of networked control systems.
Automatica, 40 (2004), pp. 2121-2128
[Olfati-Saber et al., 2007]
R. Olfati-Saber, J. Fax, R. Murray.
Consensus and cooperation in networked multi-agent systems.
Proceedings of the IEEE, 95 (2007), pp. 215-233
[Quanser, 2016]
Quanser, 2016. Rotary flexible link. Website, http://www.quanser.com/products/rotaryflexiblelink.
[Quevedo et al., 2008]
D.E. Quevedo, E.I. Silva, G.C. Goodwin.
Control over unreliable networks affected by packet erasures and variable transmission delays.
IEEE Journal on Selected Areas in Communications, 26 (2008), pp. 672-685
[Åström and Bernhardsson, 2003]
Åström, K., Bernhardsson, B., 2003. Systems with lebesgue sampling. En: Rantzer, A., Byrnes, C., (Eds.), Directions in Mathematical Systems Theory and Optimization. Vol. 286 of Lecture Notes in Control and Information Sciences. Springer Berlin /Heidelberg, pp. 1-13.
[Sandee, 2006]
Sandee, J., 2006. Event-driven control in theory and practice. Ph.D. thesis, Technische Universiteit Eindhoven.
[Seyboth et al., 2013]
G. Seyboth, D. Dimarogonas, K. Johansson.
Event-based broadcasting for multi-agent average consensus.
Automatica, 49 (2013), pp. 245-252
[Sinopoli et al., 2004]
B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, S.S. Sastry, et al.
Kalman filtering with intermittent observations.
Automatic Control. IEEE Transactions on, 49 (2004), pp. 1453-1464
[Stocker and Lunze, 2013]
Stocker, C., Lunze, J., 2013. Distributed event-based control of physically interconnected systems. En: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE, pp. 7376-7383.
[Su and Huang, 2012]
Y. Su, J. Huang.
Cooperative output regulation of linear multi-agent systems.
Automatic Control, IEEE Transactions on, 57 (2012), pp. 1062-1066
[Tabuada, 2007]
P. Tabuada.
Event-triggered real-time scheduling of stabilizing control tasks.
IEEE Transactions on Automatic Control, 52 (2007), pp. 1680-1685
[Velasco et al., 2003]
M. Velasco, P. Martí, J.M. Fuertes.
The self triggered task model for real-time control systems.
24th IEEE Real-Time Systems Symposium (RTSS03),
[Walsh and Ye, 2001]
G.C. Walsh, H. Ye.
Scheduling of networked control systems.
Control Systems, IEEE, 21 (2001), pp. 57-65
[Wang et al., 2010]
J. Wang, R.K. Ghosh, S.K. Das.
A survey on sensor localization.
Journal of Control Theory and Applications, 8 (2010), pp. 2-11
[Wang and Lemmon, 2008]
Wang, X., Lemmon, M.D., 2008. Event-triggered broadcasting across distributed networked control systems. En: American Control Conference, 2008. IEEE, pp. 3139-3144.
[Wang and Lemmon, 2011]
X. Wang, M.D. Lemmon.
Event-triggering in distributed networked control systems.
Automatic Control, IEEE Transactions on, 56 (2011), pp. 586-601
[Zhang et al., 2011]
J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, C. Chen.
Data-driven intelligent transportation systems: A survey.
Intelligent Transportation Systems, IEEE Transactions on, 12 (2011), pp. 1624-1639
[Zhang and Hristu-Varsakelis, 2006]
L. Zhang, D. Hristu-Varsakelis.
Communication and control co-design for networked control systems.
Automatica, 42 (2006), pp. 953-958
[Zhao et al., 2009]
Y. Zhao, G. Liu, D. Rees.
Design of a packed-based control framework for networked control systems.
IEEE Transactions on Control Systems Technology, 17 (2009), pp. 859-865
[Zhong and Cassandras, 2011]
M. Zhong, C. Cassandras.
Distributed coverage control and data collection with mobile sensor networks.
Automatic Control, IEEE Transactions on, 56 (2011), pp. 2445-2455
Opciones de artículo
Herramientas
es en pt
Política de cookies Cookies policy Política de cookies
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here. Utilizamos cookies próprios e de terceiros para melhorar nossos serviços e mostrar publicidade relacionada às suas preferências, analisando seus hábitos de navegação. Se continuar a navegar, consideramos que aceita o seu uso. Você pode alterar a configuração ou obter mais informações aqui.