covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de int...
Información de la revista
Vol. 10. Núm. 4.
Páginas 453-464 (octubre - diciembre 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4080
Vol. 10. Núm. 4.
Páginas 453-464 (octubre - diciembre 2013)
Open Access
Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación
ToF Camera calibration: an automatic setting of its integration time and an experimental analysis of its modulation frequency
Visitas
4080
P. Gila,
Autor para correspondencia
, T. Kislerb, G.J. Garcíaa, C.A. Jaraa, J.A. Corralesa
a Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Crta/San Vicente del Raspeig s/n, 03690 Alicante, España
b Universidad Técnica de Múnich, Múnich, Alemania
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

La percepción de profundidad se hace imprescindible en muchas tareas de manipulación, control visual y navegación de robots. Las cámaras de tiempo de vuelo (ToF: Time of Flight) generan imágenes de rango que proporcionan medidas de profundidad en tiempo real. No obstante, el parámetro distancia que calculan estas cámaras es fuertemente dependiente del tiempo de integración que se configura en el sensor y de la frecuencia de modulación empleada por el sistema de iluminación que integran. En este artículo, se presenta una metodología para el ajuste adaptativo del tiempo de integración y un análisis experimental del comportamiento de una cámara ToF cuando se modifica la frecuencia de modulación. Este método ha sido probado con éxito en algoritmos de control visual con arquitectura ‘eye-in-hand’ donde el sistema sensorial está compuesto por una cámara ToF. Además, la misma metodología puede ser aplicada en otros escenarios de trabajo.

Palabras clave:
Tiempo de vuelo
calibración
imagen de rango
percepción robótica
cámaras 3D
Abstract

The depth perception is essential in many manipulation tasks, visual inspection and robot navigation. The cameras of Time of Flight (TOF) generate range images which provide depth measurements in real time. However, the distance parameter computed from these cameras is strongly dependent on the integration time set for the sensor and the frequency of modulation used by the integrated lighting system. In this paper, a methodology for automatic setting of integration time and an experimental analysis of ToF camera behavior adjusting its modulation frequency is presented. This method has been successfully tested on visual servoing algorithms with architecture ‘eye-in-hand’ in which the sensory system consists of a ToF camera, in addition this methodology can be applied to other workspaces and scenarios.

Keywords:
Time of flight
calibration
range image
robotic perception
3d-cameras
Referencias
[Bouguet, 2000]
Bouguet, J.Y., 2000. Pyramidal implementation of affine Lucas Kanade feature tracker. Intel Corporation- Microprocessor Research Labs, OpenCV Library.
[Chaumette and Hutchinson, 2006]
Chaumette, F., Hutchinson, S., 2006. Visual servo control. I. Basic approaches. IEEE Robotics and Automation Magazine 13, IEEE Press, pp. 82-90.
[Chiabrando et al., 2009]
Chiabrando, F., Chiabrando, R., Piatti, D., Rianudo, F., 2009. Sensors for 3d imaging: metric evualuation an calibration of CCD/CMOS time-of-flight camera. Sensors 9(9), pp. 10080-10096. DOI: 10.3390/s91210080.
[Distante et al., 2010]
Distante, C., Diraco, G., Leone, A., 2010. Active range imaging dataset for indoor surveillance. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, vol. 2, pp.1-16.
[Foix et al., 2011]
S. Foix, G. Aleny, C. Torras.
Lock-in time-of-flight (ToF) cameras: a survey.
IEEE Sensors Journal, 11 (2011), pp. 1917-1926
[Frank et al., 2009]
M. Frank, M. Plaue, H. Rapp, U. Köthe, B. Jähne, F.A. Hamprecht.
Theoretical and experimental error analysis of continous-wave time-of- flight range cameras.
Optical Engineering, 48 (2009), pp. 13602-13618
[Fuchs and Hirzinger, 2008]
Fuchs, S. Hirzinger, G., 2008. Extrinsic and depth calibration of ToF-cameras. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-6. DOI: 10.1109/CVPR.2008.4587828.
[Garcia et al., 2011]
Garcia, F., Aouada D., Mirbach, B., Solignac T., Ottersten B., 2011. Real-time hybrod ToF multi-camera rig fusion system for depth map enhancement. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPRW.2011.5981740.
[Gil et al., 2010]
Gil, P., Pomares, J., Torres, F., 2010. Analysis and adaptation of integration time in PMD camera for visual servoing. In Proc. of 20th International Conference on Pattern Recognition (ICPR), IEEE Press Society, pp. 311-315. DOI: 10.1109/ICPR.2010.85.
[Herrera et al., 2011]
Herrera, D.C., Kannala, J., Heikkila, J., 2011. Accurate and practical calibration of a depth and color camera pair. In Proc. of 14th International Conference on Computer Analysis of Images and Patterns (CAIP), vol 2, Ed. Springer-Verlag Berlín, Heidelberg, pp. 437-445.
[Hussman and Liepert, 2009]
Hussman, S., Liepert, T., 2009. Three-dimensional tof robot vision system. IEEE Transactions on Instrumentation and Measurement 58(1), pp. 141-146. DOI: 10.1109/TIM.2008.928409.
[Hussman and Edeler, 2010]
Hussman, S., Edeler, T., 2010. Robot vision using 3d tof systems. En: Ales Ude, (Ed.), Robot Vision. Intech Press, pp. 293-306.
[Kakiuchi et al., 2010]
Kakiuchi, Y., Ueda, R., Kobayashi, K., Okada, K., Inaba, M., 2010. Working with movable obstacles using on-line environmet perception reconstruction using active sensing and color range sensor. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pp. 1696-1701. DOI: 10.1109/IROS.2010.5650206.
[Kim et al., 2008]
Kim, Y.M., Chan, D., Theobalt, C., Thrun, S., 2008. Design and calibration of a multi-view ToF sensor fusion system. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1524-1530. DOI: 10.1109/CVPRW.2008.4563160.
[Kisler and Gil, 2011]
Kisler, T., Gil, P., 2011. Detección y seguimiento de objetos sólidos con cámaras ToF. Actas de XXXII Jornadas de Automática (JA), CEA-IFAC Actas. Sevilla (Spain).
[Khoshelham, 2011]
Khoshelham, K. 2011. Accuracy analysis of Kinect depth data. En: D.D., Lichti, A.F., Habbib, (Ed.). In Proc of ISPRS Journal of Photogrammetry and Remote Sensing-Workshop on Laser Scanning, vol. 38(5), pp. 29-31.
[Kolb et al., 2010]
Kolb, A., Barth, E., Koch, E., Larse, R., 2010. Time-of-flight Cameras in Computer Graphics. Computer Graphics Forum, vol. 29(1), pp. 141-159. DOI: 10.1111/j.1467-8659.2009.01583.x.
[Kuehnle et al., 2008]
Kuehnle, J.U., Xue, Z., Sotz, M., Zoellner, J.M., Verl, A., Dillmann, R., 2008. Grasping in depth maps of time-of-flight cameras. In Proc. of IEEE International Workshop on Robotic and Sensors Environments (ROSE). pp. 132-137. DOI: 10.1109/ROSE.2008.466914.
[Lai et al., 2011]
Lai, K., Liefeng Bo, Xiaofrng Ren, Fox, D., 2011. Spares distance learning for object recognition combining RGB and depth information. In Proc. of International Conference on Robotics and Automation (ICRA), IEEE Press Society, pp. 4007-4013. DOI: 10.1109/ICRA.2011.5980377.
[Lichti, 2008]
Lichti, D., 2008. Self-calibration of a 3D range camera. In Proc of International Society for Photogrammetry and Remote Sensing 37(3), pp.1-6.
[Lichti and Rouzaud, 2009]
Lichti, D. Rouzaud, D., 2009. Surface-dependent 3d range camera self- calibration. En: A., Beraldin, G.S., Cheok, M., McCarthy, (Ed.), In Proc. of SPIE vol. 72390, pp. DOI: 10.1117/12.805509.
[Lichti and Kim, 2011]
Lichti, D., Kim, C., 2011. A comparison of three geometric self-calibration methods for range cameras. Remote Sensing 11(3), pp. 1014-1028. DOI: 10.3390/rs3051014.
[Lindner et al., 2008]
Lindner, M., Kolb, A., Ringbeck, T., 2008. New insights into the calibration of ToF-sensors. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1603-1607. DOI: 10.1109/CVPRW.2008.4563172.
[Lindner et al., 2010]
M. Lindner, I. Schiller, A. Kolb, R. Koch.
Time-of-flight sensor calibration for accurate range sensing.
Computer Vision and Image Understanding, 114 (2010), pp. 1318-1328
[May et al., 2006]
May, S., Werner, B., Surmann, H., Pervölz, K., 2006. “3d time-of-flight cameras for mobile robotics. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, 790-795, DOI: 10.1109/IROS.2006.281670.
[May et al., 2009a]
May, S., Fuchs, S., Droeschel, D. Holz, D., Nüchter, A., 2009. Robust 3d-mapping with time-of-flight cameras. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press Society, pp 1673-1678.
[May et al., 2009b]
May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J., 2009. Three-dimensional mapping with time-of-light cameras. Journal of Field Robotics. Special Issue on Three-dimensional Mapping Part 2, 26(11-12), pp. 934-965. DOI: 10.1002/ROB.20321.
[Mufti and Mahony, 2011]
F. Mufti, R. Mahony.
Statistical analysis of signal measurement in time of flight cameras.
Journal of Photogrammetry and Remote Sensing (ISPR), 66 (2011), pp. 720-731
[Pattison, 2010]
Pattison, T., 2010. Quantification and description of distance measurement errors of a time-of-flight camera. M. Sc. Thesis. University of Stuttgart, Stuttgart (Germany).
[Pomares et al., 2010]
Pomares, J., Gil, P., Torres, F., 2010. Visual control of robots using range images. Sensors 10(8), pp. 7303-7322. DOI: 10.3290/s100807303.
[Rapp et al., 2008]
Rapp, H., Frank, M., Hamprecht, F.A., Jähne, B., 2008. A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras. International Journal of Intelligent Systems Technologies and Applications vol. 5(3-4), pp. 402-413. DOI: 10.1504/IJISTA.2008.021303.
[Shahbazi et al., 2011]
M. Shahbazi, S. Hoimayouni, M. Saadatseresht, M. Sattari.
Range camera self-calibration based on integrated bundle adjustment via joint setup with a 2d digital camera.
Sensors, 11 (2011), pp. 8721-8740
[Schaller, 2011]
Schaller, C., 2011, Time-of-Flight-A new Modality for Radiotherapy, M. Sc. Thesis. University Erlangen-Nuremberg, Erlagen (Germany).
[Schiller et al., 2008]
Schiller, I., Beder, C., Koch, R., 2008. Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol. 37, pp. 297-302.
[Schwarz et al., 2010]
Schwarz, L., Mateus, D., Castaneda, V., Navab, N., 2010. Manifold learning for ToF-based human body tracking and activity recognition. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, pp.1-11. DOI: 10.5244/C.24.80.
[Shotton et al., 2011]
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A., 2011. Real-time human pose recognition in parts from single depth images. In Proc of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1297-1304.
[Smisek, 2011]
Smisek, J., 2011. 3D Camera Calibration. MSc. Thesis. Czech Technnical Univesity, Prague (Czech).
[Weyer et al., 2008]
Weyer, C.A., Bae, K.H., Lim, K., Lichti, D., 2008. Extensive metric performance evaluation of a 3D range camera. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol.37(5), pp.939-944.
[Wiedemann et al., 2008]
Wiedemann M., Sauer M., Driewer F. Schilling K., 2008. Analysis and characterization of the PMD camera for aplication in mobile robots. M. J. Chung and P. Misra (Ed.). In Proc. of 17th World Congress of the International Federation of Automotic Control, IFAC Press, pp.13689-13694.
[Zhang, 2000]
Z. Zhang.
A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (2000), pp. 1330-1334
[Zhu et al., 2008]
Zhu, J., Wang, L., Yang, R., Davis, J., 2008. Fusion of time-of-flight depth and stereo for high accuracy depth maps. In Proc. of Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPR.2008.4587761.
[Zhu et al., 2011]
J. Zhu, R. Yang, X. Xiang.
Eye contact in video conference via fusion of time-of-flight depth sensor and stereo.
3D Research, 2 (2011), pp. 1-10
[Zinber et al., 2003]
Zinber, T., Schmidt, J., Niemann, H., 2003. A refined ICP algorithm for robust 3d correspondence estimation. In Proc. of Conference on Image Processing (ICIP), IEEE Press, pp. 695-698.
Copyright © 2011. EA
Opciones de artículo