Compartir
array:24 [ "pii" => "S2253654X21000275" "issn" => "2253654X" "doi" => "10.1016/j.remn.2021.01.005" "estado" => "S300" "fechaPublicacion" => "2022-05-01" "aid" => "1266" "copyright" => "Sociedad Española de Medicina Nuclear e Imagen Molecular" "copyrightAnyo" => "2021" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Med Nucl Imagen Mol. 2022;41:153-63" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "en" => array:19 [ "pii" => "S2253808921000604" "issn" => "22538089" "doi" => "10.1016/j.remnie.2021.03.014" "estado" => "S300" "fechaPublicacion" => "2022-05-01" "aid" => "1266" "copyright" => "Sociedad Española de Medicina Nuclear e Imagen Molecular" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Med Nucl Imagen Mol. 2022;41:153-63" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Increasing the confidence of <span class="elsevierStyleSup">18</span>F-Florbetaben PET interpretations: Machine learning quantitative approximation" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "153" "paginaFinal" => "163" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Aumento de la confianza en la interpretación del PET con <span class="elsevierStyleSup">18</span>F-Florbetaben: “machine learning” basado en la aproximación cuantitativa" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2769 "Ancho" => 3333 "Tamanyo" => 578720 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">(A) Axial slices of a case with no complete agreement between observers. Composite cortex/grey cerebellum SUVR was of 1.26 (lower than the cut-off threshold for positivity). (B) Coronal slices are representative of a negative study with the typical tree branch pattern.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Ana María García Vicente, María Jesús Tello Galán, Francisco José Pena Pardo, Mariano Amo-Salas, Beatriz Mondejar Marín, Santiago Navarro Muñoz, Ignacio Rueda Medina, Víctor Manuel Poblete García, Carlos Marsal Alonso, Ángel Soriano Castrejón" "autores" => array:10 [ 0 => array:2 [ "nombre" => "Ana María" "apellidos" => "García Vicente" ] 1 => array:2 [ "nombre" => "María Jesús" "apellidos" => "Tello Galán" ] 2 => array:2 [ "nombre" => "Francisco José" "apellidos" => "Pena Pardo" ] 3 => array:2 [ "nombre" => "Mariano" "apellidos" => "Amo-Salas" ] 4 => array:2 [ "nombre" => "Beatriz" "apellidos" => "Mondejar Marín" ] 5 => array:2 [ "nombre" => "Santiago" "apellidos" => "Navarro Muñoz" ] 6 => array:2 [ "nombre" => "Ignacio" "apellidos" => "Rueda Medina" ] 7 => array:2 [ "nombre" => "Víctor Manuel" "apellidos" => "Poblete García" ] 8 => array:2 [ "nombre" => "Carlos" "apellidos" => "Marsal Alonso" ] 9 => array:2 [ "nombre" => "Ángel" "apellidos" => "Soriano Castrejón" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S2253654X21000275" "doi" => "10.1016/j.remn.2021.01.005" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253654X21000275?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253808921000604?idApp=UINPBA00004N" "url" => "/22538089/0000004100000003/v1_202205140730/S2253808921000604/v1_202205140730/en/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2253654X21001074" "issn" => "2253654X" "doi" => "10.1016/j.remn.2021.03.016" "estado" => "S300" "fechaPublicacion" => "2022-05-01" "aid" => "1309" "copyright" => "Sociedad Española de Medicina Nuclear e Imagen Molecular" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Med Nucl Imagen Mol. 2022;41:164-70" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Parámetros cuantitativos de la PET/TC basal con <span class="elsevierStyleSup">18</span>F-FDG como factores pronósticos en el carcinoma de células escamosas de esófago" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "164" "paginaFinal" => "170" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Baseline <span class="elsevierStyleSup">18</span>F-FDG PET/CT quantitative parameters as prognostic factors in esophageal squamous cell cancer" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 982 "Ancho" => 1254 "Tamanyo" => 63409 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Curvas de Kaplan-Meier. Comparación de la SLP según el valor de MTV.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A. Martínez, J.R. Infante, J. Quirós, J.I. Rayo, J. Serrano, M. Moreno, P. Jiménez, A. Cobo, A. Baena" "autores" => array:9 [ 0 => array:2 [ "nombre" => "A." "apellidos" => "Martínez" ] 1 => array:2 [ "nombre" => "J.R." "apellidos" => "Infante" ] 2 => array:2 [ "nombre" => "J." "apellidos" => "Quirós" ] 3 => array:2 [ "nombre" => "J.I." "apellidos" => "Rayo" ] 4 => array:2 [ "nombre" => "J." "apellidos" => "Serrano" ] 5 => array:2 [ "nombre" => "M." "apellidos" => "Moreno" ] 6 => array:2 [ "nombre" => "P." "apellidos" => "Jiménez" ] 7 => array:2 [ "nombre" => "A." "apellidos" => "Cobo" ] 8 => array:2 [ "nombre" => "A." "apellidos" => "Baena" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2253808921001270" "doi" => "10.1016/j.remnie.2021.07.006" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253808921001270?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253654X21001074?idApp=UINPBA00004N" "url" => "/2253654X/0000004100000003/v1_202205110730/S2253654X21001074/v1_202205110730/es/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S2253654X21000299" "issn" => "2253654X" "doi" => "10.1016/j.remn.2021.02.004" "estado" => "S300" "fechaPublicacion" => "2022-05-01" "aid" => "1268" "copyright" => "Sociedad Española de Medicina Nuclear e Imagen Molecular" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Med Nucl Imagen Mol. 2022;41:146-52" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Correlación entre el metabolismo de la glucosa cerebral (<span class="elsevierStyleSup">18</span>F-FDG) y el flujo sanguíneo cerebral con marcadores de amiloide (<span class="elsevierStyleSup">18</span>F-florbetapir) en práctica clínica: evidencias preliminares" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "146" "paginaFinal" => "152" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Correlation between brain glucose metabolism (<span class="elsevierStyleSup">18</span>F-FDG) and cerebral blood flow with amyloid tracers (<span class="elsevierStyleSup">18</span>F-florbetapir) in clinical routine: Preliminary evidences" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1266 "Ancho" => 2926 "Tamanyo" => 230283 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Análisis de correlación de Pearson basado en el ROI de precúneo entre la PET con <span class="elsevierStyleSup">18</span>F-FDG (azul) y la PET precoz con <span class="elsevierStyleSup">18</span>F-florbetapir precoz (rojo).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "D. Albano, E. Premi, A. Peli, C. Luca, F. Bertagna, R. Turrone, B. Borroni, V.D. Calhoun, C. Rodella, M. Magoni, A. Padovani, R. Giubbini, B. Paghera" "autores" => array:13 [ 0 => array:2 [ "nombre" => "D." "apellidos" => "Albano" ] 1 => array:2 [ "nombre" => "E." "apellidos" => "Premi" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Peli" ] 3 => array:2 [ "nombre" => "C." "apellidos" => "Luca" ] 4 => array:2 [ "nombre" => "F." "apellidos" => "Bertagna" ] 5 => array:2 [ "nombre" => "R." "apellidos" => "Turrone" ] 6 => array:2 [ "nombre" => "B." "apellidos" => "Borroni" ] 7 => array:2 [ "nombre" => "V.D." "apellidos" => "Calhoun" ] 8 => array:2 [ "nombre" => "C." "apellidos" => "Rodella" ] 9 => array:2 [ "nombre" => "M." "apellidos" => "Magoni" ] 10 => array:2 [ "nombre" => "A." "apellidos" => "Padovani" ] 11 => array:2 [ "nombre" => "R." "apellidos" => "Giubbini" ] 12 => array:2 [ "nombre" => "B." "apellidos" => "Paghera" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253654X21000299?idApp=UINPBA00004N" "url" => "/2253654X/0000004100000003/v1_202205110730/S2253654X21000299/v1_202205110730/es/main.assets" ] "es" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Aumento de la confianza en la interpretación del PET con <span class="elsevierStyleSup">18</span>F-Florbetaben: “machine learning” basado en la aproximación cuantitativa" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "153" "paginaFinal" => "163" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "A.M. García Vicente, M.J. Tello Galán, F.J. Pena Pardo, M. Amo-Salas, B. Mondejar Marín, S. Navarro Muñoz, I. Rueda Medina, V.M. Poblete García, C. Marsal Alonso, Á. Soriano Castrejón" "autores" => array:10 [ 0 => array:4 [ "nombre" => "A.M." "apellidos" => "García Vicente" "email" => array:1 [ 0 => "angarvice@yahoo.es" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "M.J." "apellidos" => "Tello Galán" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "F.J." "apellidos" => "Pena Pardo" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "M." "apellidos" => "Amo-Salas" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:3 [ "nombre" => "B." "apellidos" => "Mondejar Marín" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 5 => array:3 [ "nombre" => "S." "apellidos" => "Navarro Muñoz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 6 => array:3 [ "nombre" => "I." "apellidos" => "Rueda Medina" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 7 => array:3 [ "nombre" => "V.M." "apellidos" => "Poblete García" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 8 => array:3 [ "nombre" => "C." "apellidos" => "Marsal Alonso" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 9 => array:3 [ "nombre" => "Á." "apellidos" => "Soriano Castrejón" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Departamento de Medicina Nuclear, Hospital General Universitario, Ciudad Real, España" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Departamento de Matemáticas, Universidad de Castilla-La Mancha, Ciudad Real, España" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Departamento de Neurología, Complejo Hospitalario de Toledo, Toledo, España" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Departamento de Neurología, Hospital La Mancha Centro, Alcázar de San Juan (Ciudad Real), España" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Autor para correspondencia." ] ] ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Increasing the confidence of <span class="elsevierStyleSup">18</span>F-florbetaben PET interpretations: Machine learning quantitative approximation" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figura 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1600 "Ancho" => 1755 "Tamanyo" => 236904 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">A) Cortes axiales de un caso positivo con acuerdo total entre observadores. El SUVR integrado córtex/cerebelo gris fue de 1,78 (superior al punto de corte para positividad). B) Los cortes coronales son representativos de un estudio con el patrón típico de PET positivo.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Introducción</span><p id="par0005" class="elsevierStylePara elsevierViewall">Se cree que el depósito inicial de β amiloide (Aβ) es el impulsor de la enfermedad de Alzheimer (EA), que precede a la aparición de los síntomas clínicos en 10 años o más<a class="elsevierStyleCrossRefs" href="#bib0365"><span class="elsevierStyleSup">1,2</span></a>. Los biomarcadores de imagen, como la PET con <span class="elsevierStyleSup">18</span>F-florbetabén, permiten la detección precoz y precisa <span class="elsevierStyleItalic">in vivo</span> de los depósitos de Aβ.</p><p id="par0010" class="elsevierStylePara elsevierViewall">La interpretación de la PET amiloide es visual y subjetiva para clasificar los estudios como positivos o negativos. Esta evaluación dicotómica parece ser suficiente para fines diagnósticos en manos expertas, basada en la alta congruencia interobservador encontrada en varios trabajos<a class="elsevierStyleCrossRefs" href="#bib0375"><span class="elsevierStyleSup">3-8</span></a>. Sin embargo, para los observadores noveles, la congruencia disminuye y el número de exploraciones equívocas aumenta. Por otro lado, las interpretaciones erróneas a veces están relacionadas con problemas metodológicos debido al ruido o desenfoque de la imagen, la atrofia con una cortical adelgazada e incluso el depósito escaso de Aβ<a class="elsevierStyleCrossRef" href="#bib0405"><span class="elsevierStyleSup">9</span></a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">El enfoque semicuantitativo de la captación cortical, utilizando diferentes localizaciones como regiones de referencia para establecer índices (corteza/región de referencia), puede apoyar la interpretación visual, aunque cada grupo de trabajo ha definido un valor umbral de la relación del valor de la captación estandarizada (SUVR), por encima y por debajo del cual los estudios se clasifican como positivos o negativos, respectivamente<a class="elsevierStyleCrossRefs" href="#bib0410"><span class="elsevierStyleSup">10-16</span></a>. Esta falta de reproducibilidad, incluso utilizando el mismo radiotrazador, limita el uso de la semicuantificación como una herramienta fiable en el diagnóstico del paciente.</p><p id="par0020" class="elsevierStylePara elsevierViewall">En la EA se ha descrito el depósito preferencial de Aβ en regiones corticales específicas (regiones diana) y, aunque se deben esperar algunas ventajas de su análisis cuidadoso, el potencial de la semicuantificación de estas áreas para mejorar la concordancia del acuerdo interobservador no se ha evaluado completamente y el análisis visual sigue siendo el patrón de referencia<a class="elsevierStyleCrossRef" href="#bib0445"><span class="elsevierStyleSup">17</span></a>.</p><p id="par0025" class="elsevierStylePara elsevierViewall">Los pacientes con EA muestran una mayor carga de Aβ en todo el córtex de forma global y en todas las regiones corticales (precúneo, cingulado anterior y posterior y córtex frontal medial, temporal, parietal y occipital) en comparación con los individuos sanos, en los que es asumible que el depósito de Aβ sea preferiblemente simétrico<a class="elsevierStyleCrossRef" href="#bib0450"><span class="elsevierStyleSup">18</span></a>.</p><p id="par0030" class="elsevierStylePara elsevierViewall">En un intento de despejar algunas de las cuestiones anteriores, en el presente trabajo nos propusimos obtener parámetros semicuantitativos para apoyar las siguientes hipótesis: a) la semicuantificación ofrece un mejor rendimiento diagnóstico que la evaluación visual, evitando las diferencias entre observadores (y permitiendo el aprendizaje automático); b) los resultados semicuantitativos obtenidos en las áreas corticales diana no ofrecen un valor adicional a la valoración integrada cortical y c) el depósito de Aβ debe ser bilateral y simétrico (teoría del depósito amiloide cerebral difuso y uniforme).</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Material y métodos</span><p id="par0035" class="elsevierStylePara elsevierViewall">Se realizó un estudio retrospectivo, longitudinal y multicéntrico que incluyó 5 hospitales. El Comité Ético del centro de referencia, donde se realizaron todas las tomografías PET, aprobó el protocolo del estudio, que se llevó a cabo de acuerdo con los estándares éticos de la Declaración de Helsinki.</p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Pacientes</span><p id="par0040" class="elsevierStylePara elsevierViewall">Se incluyó consecutivamente a los pacientes que cumplieron uno de los 3<span class="elsevierStyleHsp" style=""></span>criterios siguientes<a class="elsevierStyleCrossRef" href="#bib0455"><span class="elsevierStyleSup">19</span></a>: a) deterioro cognitivo leve de origen incierto, b) deterioro cognitivo leve de inicio temprano (antes de los 65 años de edad) o c) demencia atípica o mixta.</p><p id="par0045" class="elsevierStylePara elsevierViewall">Se excluyó a los pacientes con sospecha clínica o diagnóstico de enfermedad de Parkinson idiopática o demencia con cuerpos de Lewy.</p><p id="par0050" class="elsevierStylePara elsevierViewall">Todos los participantes dieron su consentimiento informado y por escrito antes de su inclusión en el estudio. El primer paciente fue incluido en mayo de 2016 y el último en junio de 2019.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Imágenes PET/TC</span><p id="par0055" class="elsevierStylePara elsevierViewall">La adquisición de PET/TC se realizó 104<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>17<span class="elsevierStyleHsp" style=""></span>min después de la administración intravenosa de 314,03<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>65,39<span class="elsevierStyleHsp" style=""></span>M Bq de <span class="elsevierStyleSup">18</span>F-florbetabén. Se obtuvo el índice de masa corporal (IMC) para todos los pacientes incluidos.</p><p id="par0060" class="elsevierStylePara elsevierViewall">Todas las adquisiciones de PET se realizaron utilizando un sistema híbrido PET/TC Discovery-STE (General Electric Medical Systems, Milwaukee, WI, EE. UU.). Se adquirió una TC (helicoidal, kV<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>120<span class="elsevierStyleHsp" style=""></span>kV, mA<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>80, grosor de corte reconstruido<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3,5<span class="elsevierStyleHsp" style=""></span>mm) y una tomografía por emisión PET de 20<span class="elsevierStyleHsp" style=""></span>min (con un tamaño de matriz de 128<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>128, de 28 subconjuntos y 2 iteraciones). Se hicieron correcciones de aleatoriedad, dispersión, atenuación de fotones y decaimiento.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Análisis PET/TC</span><p id="par0065" class="elsevierStylePara elsevierViewall">Tres especialistas en medicina nuclear, con al menos 2 años de experiencia leyendo estudios de PET amiloide, evaluaron las exploraciones PET. Los lectores fueron ciegos a toda la información clínica y diagnóstica.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Lectura visual</span><p id="par0070" class="elsevierStylePara elsevierViewall">Los estudios fueron interpretados visual e independientemente por 2<span class="elsevierStyleHsp" style=""></span>observadores, que registraron las siguientes ubicaciones diana derecha e izquierda: orbitofrontal, temporal lateral, lóbulos parietales y precúneo cingulado/posterior, como positivo (captación intensa de la sustancia gris al menos similar a la radiactividad de la sustancia blanca, puntuación 1) o negativo (captación inespecífica de la sustancia blanca con poco o ningún depósito en la sustancia gris, puntuación 0) para el depósito de Aβ. Se consideró un estudio positivo cuando al menos una de las áreas diana citadas anteriormente mostró una puntuación de 1. Las evaluaciones discordantes fueron evaluadas por un tercer lector.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Análisis semicuantitativo</span><p id="par0075" class="elsevierStylePara elsevierViewall">Las imágenes fueron procesadas utilizando un programa de análisis cuantitativo estandarizado (CortexID Suite)<a class="elsevierStyleCrossRef" href="#bib0460"><span class="elsevierStyleSup">20</span></a> para generar volúmenes de interés colocados en las diferentes regiones corticales (prefrontal, sensoriomotor, cingulado anterior, cingulado posterior, córtex parietal, temporal, occipital y temporomesial de ambos hemisferios) y las 3<span class="elsevierStyleHsp" style=""></span>regiones de referencia: cerebelo gris, cerebelo total y protuberancia, para obtener SUVR (SUVRcg, SUVRct y SUVRp, respectivamente). Además, se obtuvieron SUVR integrados, como el SUVR medio de todas las regiones corticales a cualquiera de las áreas de referencia (<a class="elsevierStyleCrossRef" href="#fig0005">fig. 1</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Análisis estadístico</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Lectura visual</span><p id="par0080" class="elsevierStylePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">-</span><p id="par0085" class="elsevierStylePara elsevierViewall">La concordancia entre lectores de la evaluación visual se evaluó con el coeficiente kappa (κ) para el análisis global y las ubicaciones diana. La concordancia se consideró pobre si κ era menor que 0,20, satisfactoria si κ era 0,21-0,40, moderada si κ era 0,41-0,60, buena si κ era 0,61-0,80 y excelente si κ era más de 0,80.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">-</span><p id="par0090" class="elsevierStylePara elsevierViewall">Las relaciones de la evaluación visual (positiva o negativa) con variables cuantitativas (edad, IMC, actividad del radiotrazador y tiempo desde la administración del radiotrazador hasta la adquisición de la PET) se exploraron mediante la prueba t de Student, considerando la prueba t de Welch cuando no se satisfizo la homocedasticidad.</p></li></ul></p></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Análisis semicuantitativo</span><p id="par0095" class="elsevierStylePara elsevierViewall"><ul class="elsevierStyleList" id="lis0010"><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">-</span><p id="par0100" class="elsevierStylePara elsevierViewall">Se obtuvieron valores medios de SUVR para cada localización cortical y la integrada, para estudios positivos y negativos, en la muestra total de pacientes, y se evaluaron sus diferencias. Se realizó un subanálisis, dividiendo a los pacientes en 2<span class="elsevierStyleHsp" style=""></span>grupos (menores o mayores de 65 años). En estos análisis se utilizaron las pruebas t de Student y t de Welch.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">-</span><p id="par0105" class="elsevierStylePara elsevierViewall">Las diferencias interhemisféricas entre todas las regiones se evaluaron estadísticamente mediante la prueba t para muestras pareadas. Sin embargo, de manera práctica, se consideró significativa una diferencia de más del 10%<a class="elsevierStyleCrossRef" href="#bib0465"><span class="elsevierStyleSup">21</span></a>.</p></li><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">-</span><p id="par0110" class="elsevierStylePara elsevierViewall">Mediante el análisis de las características del operador receptor (ROC), se obtuvieron valores de corte de los diferentes SUVR obtenidos con los mejores parámetros diagnósticos (mayor área bajo la curva, AUC) capaces de predecir un estudio PET positivo. Los puntos de corte fueron elegidos para un buen acuerdo entre sensibilidad y especificidad.</p></li></ul></p></span></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Resultados</span><p id="par0115" class="elsevierStylePara elsevierViewall">Fueron evaluados un total de 135 pacientes, 67 (49,6%) hombres y 68 (50,4%) mujeres.</p><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Lectura visual</span><p id="par0120" class="elsevierStylePara elsevierViewall">En la evaluación visual, 72 fueron clasificados como positivos (38,9% hombres y 61,1% mujeres) y 63 como negativos (61,9% hombres y 38,1% mujeres).</p><p id="par0125" class="elsevierStylePara elsevierViewall">La edad media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>desviación estándar (DE) de los pacientes con PET amiloide positiva o negativa fue de 67,1<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>6,7 y 61,7<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>7,5 años, respectivamente. Los pacientes con un estudio PET positivo eran mayores (t: 4,42; <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0,001) con un IMC más bajo (−3,18; <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0,002) que los pacientes con un estudio PET negativo.</p><p id="par0130" class="elsevierStylePara elsevierViewall">No se encontraron diferencias en la clasificación visual de la PET respecto a la actividad del radiotrazador administrado (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0,418) y el tiempo desde la administración del radiotrazador hasta la adquisición de la imagen (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0,929).</p><p id="par0135" class="elsevierStylePara elsevierViewall">Los 2<span class="elsevierStyleHsp" style=""></span>observadores estuvieron de acuerdo en todas las evaluaciones globales, excepto en 3. Además, en 10 casos, se encontraron discordancias en los estudios PET positivos, atendiendo al análisis de las regiones diana, ya que el depósito global de Aβ no fue detectado visualmente en todos los casos por los 2<span class="elsevierStyleHsp" style=""></span>observadores. Las <a class="elsevierStyleCrossRefs" href="#fig0010">figuras 2 y 3</a> representan 2<span class="elsevierStyleHsp" style=""></span>ejemplos de una evaluación de estudio discordante y concordante entre observadores.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0140" class="elsevierStylePara elsevierViewall">La concordancia interobservador en el análisis visual fue excelente, con una <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0,001 en todos los casos y con coeficientes κ para el global y las regiones lateral derecha temporal, lateral izquierda temporal, frontal derecha, frontal izquierda, precúneo/cingulado posterior, parietal derecha y parietal izquierda de 0,95; 0,95; 0,94; 0,93; 0,91; 0,91; 0,93 y 0,85, respectivamente.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Análisis semicuantitativo</span><p id="par0145" class="elsevierStylePara elsevierViewall">Todos los SUVR integrados fueron significativamente más altos en los estudios PET positivos que en las exploraciones PET negativas.</p><p id="par0150" class="elsevierStylePara elsevierViewall">En los estudios positivos, la media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>DE de los SUVRcg, SUVRct y SUVRp integrados fueron: 1,63<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,25 (rango 1,02<span class="elsevierStyleMonospace">-</span>2,31), 1,48<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,20 (rango 0,95<span class="elsevierStyleMonospace">-</span>1,90) y 0,90<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,16 (rango 0,55<span class="elsevierStyleMonospace">-</span>1,43), respectivamente. Para los estudios negativos (normales), estos valores fueron de 1,14<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (rango 0,94-1,38), 1,02<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (rango 0,52-1,29) y 0,58<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (rango 0,43-0,76), respectivamente.</p><p id="par0155" class="elsevierStylePara elsevierViewall">Además, se observaron diferencias significativas entre las exploraciones PET positivas y negativas para todas las regiones exploradas. En las <a class="elsevierStyleCrossRefs" href="#tbl0005">tablas 1 a 3</a> se muestran los valores de SUVRcg, SUVRct y SUVRp en los lóbulos derecho e izquierdo. No se observó variación de los resultados citados atendiendo a subgrupos de edad.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><p id="par0160" class="elsevierStylePara elsevierViewall">Las regiones corticales con mayores diferencias entre las clasificaciones positiva y negativa fueron el cingulado prefrontal y posterior, seguido del integrado. Por otro lado, las regiones con menor poder discriminativo entre la PET positiva y negativa fueron el córtex sensoriomotor y temporomesial.</p><p id="par0165" class="elsevierStylePara elsevierViewall">No se encontraron diferencias estadísticamente significativas entre los hemisferios, con independencia de la clasificación visual de la PET (positiva o negativa), a excepción del cingulado anterior, el cingulado posterior y los lóbulos parietales (<a class="elsevierStyleCrossRefs" href="#tbl0020">tablas 4 y 5</a>). El depósito del radiotrazador fue mayor en el lóbulo parietal derecho y en el cingulado anterior y posterior izquierdos. Sin embargo, en ningún caso estas diferencias fueron superiores al 10%.</p><elsevierMultimedia ident="tbl0020"></elsevierMultimedia><elsevierMultimedia ident="tbl0025"></elsevierMultimedia><p id="par0170" class="elsevierStylePara elsevierViewall">Utilizando el análisis ROC, las localizaciones cuyo SUVR mostró la mayor AUC y, por tanto, el mejor rendimiento diagnóstico, fueron prefrontal, cingulado posterior y córtex integrado, con valores superiores a 0,950 (<a class="elsevierStyleCrossRef" href="#tbl0030">tabla 6</a>).</p><elsevierMultimedia ident="tbl0030"></elsevierMultimedia><p id="par0175" class="elsevierStylePara elsevierViewall">Considerando, por ejemplo, un punto de corte de 1,30 para el integrado SUVRcg como herramienta de aprendizaje automático, se encontraron 8 desacuerdos (posibles clasificaciones erróneas) con el análisis visual; 5 correspondieron a desacuerdos visuales entre observadores (uno global y 4 atendiendo al análisis de las regiones diana) y 3 en casos de acuerdo interobservador total. Las clasificaciones erróneas en 5/8 consistieron en visuales positivas vs. clasificación automática negativa (falsos positivos del análisis visual). De hecho, solo 7 casos mostraron valores de SUVR cercanos al punto de corte (de 1,25 a 1,35) y 5 de ellos correspondieron a casos con desacuerdo interobservador en el análisis visual.</p></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Discusión</span><p id="par0180" class="elsevierStylePara elsevierViewall">En cuanto a la interpretación visual del PET amiloide, la Food and Drug Agency y la Agencia Europea del Medicamento dan criterios de interpretación específicos para los diferentes trazadores de PET amiloide<a class="elsevierStyleCrossRef" href="#bib0405"><span class="elsevierStyleSup">9</span></a>. Todos los criterios tienen en común el algoritmo de lectura binaria cualitativa de una exploración positiva o negativa, centrado en el análisis de regiones diana, como las cortezas laterales temporales, frontales, precúneos/cingulados posteriores y parietales. Sin embargo, no existe un consenso global con respecto a cómo realizar la evaluación visual. Con la PET con <span class="elsevierStyleSup">18</span>F-florbetapir, se consideran patrones reconocidos de positividad 2<span class="elsevierStyleHsp" style=""></span>o más áreas cerebrales con contraste reducido o ausente de sustancia gris o blanca o una o más áreas en las que la radiactividad de la sustancia gris sea intensa<a class="elsevierStyleCrossRef" href="#bib0470"><span class="elsevierStyleSup">22</span></a>. Para el <span class="elsevierStyleSup">18</span>F-florbetabén se ha descrito una evaluación visual más detallada, utilizando un sistema de puntuación de 3<span class="elsevierStyleHsp" style=""></span>grados con el que se clasifica como positivo un depósito menor de Aβ en una región única<a class="elsevierStyleCrossRef" href="#bib0475"><span class="elsevierStyleSup">23</span></a>. En el presente trabajo, se utilizó una evaluación conservadora, considerando un estudio PET positivo solo mediante la observación de la deposición de radiotrazador en una localización diana cortical.</p><p id="par0185" class="elsevierStylePara elsevierViewall">La interpretación visual de las imágenes amiloides hecha por el médico especialista en medicina nuclear se considera efectiva, con una variabilidad entre evaluadores que depende de la experiencia del observador, aunque en la mayoría de los trabajos se han publicado altos valores de concordancia que van desde 0,71 hasta 0,92<a class="elsevierStyleCrossRefs" href="#bib0480"><span class="elsevierStyleSup">24-31</span></a>. Esta concordancia se reduce cuando la interpretación de cada área cerebral se realiza de forma individual, como observamos en el presente trabajo, con discordancias en 13 de los 135 casos, 2<span class="elsevierStyleHsp" style=""></span>de ellos con implicaciones en la clasificación global (positivo o negativo).</p><p id="par0190" class="elsevierStylePara elsevierViewall">Es importante considerar que la experiencia en el análisis visual es un factor clave que afecta no solo al rendimiento diagnóstico de la PET sino también a la evaluación de la concordancia. Además, la variabilidad de la interpretación de la imagen, tanto visual como cuantitativa, depende, entre otras cosas, de la resolución de la imagen, del ruido y la uniformidad. Otras condiciones clínicas, como la atrofia o la hidrocefalia, pueden reducir las tasas de coincidencia en los lóbulos parietal y temporal, como encontramos, de acuerdo con trabajos anteriores<a class="elsevierStyleCrossRefs" href="#bib0375"><span class="elsevierStyleSup">3,4</span></a>.</p><p id="par0195" class="elsevierStylePara elsevierViewall">Además, la cantidad de depósitos de Aβ influye en la interpretación de la PET. Cantidades significativas de deposición de Aβ en el cerebro no suponen ningún problema en el análisis visual, ya que la captación de los radiotrazadores en la sustancia gris difumina la diferenciación de la unión gris-blanca. Sin embargo, los casos limítrofes, con valores intermedios de SUVR, especialmente encontrados en sujetos en las primeras etapas de la enfermedad, pueden generar dudas que conduzcan a la variabilidad en su evaluación<a class="elsevierStyleCrossRef" href="#bib0520"><span class="elsevierStyleSup">32</span></a>. Estos estudios ambiguos se han reportado en hasta el 13% utilizando <span class="elsevierStyleSup">18</span>F-florbetapir<a class="elsevierStyleCrossRef" href="#bib0400"><span class="elsevierStyleSup">8</span></a>. Yamane et al.<a class="elsevierStyleCrossRef" href="#bib0525"><span class="elsevierStyleSup">33</span></a>, usando PET con <span class="elsevierStyleSup">11</span>C-PIB, describieron la captación cortical regional equívoca como una captación ligeramente mayor o similar a la de la sustancia blanca cerebral que atrapa más de una circunvolución o como un punto de elevada captación limitado a una circunvolución. En caso de estudios indeterminados sin acuerdo visual entre observadores, la valoración de las imágenes de PET fusionada con TC o RM (para aclarar en qué tejido se encuentra la captación del radiotrazador) o la valoración de la visualización correlacionada de los planos coronal y sagital pueden ayudar a definir la captación del trazador, obteniendo una mejor definición del «patrón en rama». En un trabajo reciente en el que se utilizó <span class="elsevierStyleSup">18</span>F-florbetabén, se describió que la puntuación de confianza de la interpretación visual con el sistema basado en el aprendizaje profundo (<span class="elsevierStyleItalic">deep-learning</span>) fue significativamente mayor que las de la interpretación visual sola<a class="elsevierStyleCrossRef" href="#bib0530"><span class="elsevierStyleSup">34</span></a>.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Entre los cuantificadores, el SUVR es el más utilizado y validado, en comparación con la lectura binaria<a class="elsevierStyleCrossRef" href="#bib0535"><span class="elsevierStyleSup">35</span></a>. Se han propuesto varias regiones de referencia sobre la base de su deposición reducida de Aβ incluso en sujetos positivos para amiloide<a class="elsevierStyleCrossRef" href="#bib0445"><span class="elsevierStyleSup">17</span></a>. La región de referencia suele ser sustancia gris cerebelosa, pero también se ha utilizado todo el cerebelo<a class="elsevierStyleCrossRef" href="#bib0525"><span class="elsevierStyleSup">33</span></a> y la protuberancia<a class="elsevierStyleCrossRefs" href="#bib0540"><span class="elsevierStyleSup">36,37</span></a>. La protuberancia es la región más activa, seguida de todo el cerebelo, mientras que la localización en la sustancia gris cerebelosa es un área fría<a class="elsevierStyleCrossRef" href="#bib0390"><span class="elsevierStyleSup">6</span></a>.</p><p id="par0205" class="elsevierStylePara elsevierViewall">Aunque no existe consenso con respecto a la mejor región de referencia, las estimaciones de SUVR utilizando todo el cerebelo como región de referencia parecen hacer que la medida sea menos propensa a errores de segmentación que la selección de la sustancia gris del cerebelo o el tronco encefálico<a class="elsevierStyleCrossRef" href="#bib0550"><span class="elsevierStyleSup">38</span></a>.</p><p id="par0210" class="elsevierStylePara elsevierViewall">Con el uso de <span class="elsevierStyleSup">18</span>F-florbetabén, se han utilizado diferentes valores umbral de SUVR para clasificar a los participantes como Aβ positivos o negativos (<a class="elsevierStyleCrossRef" href="#tbl0035">tabla 7</a>). Sin embargo, a pesar de la experiencia previa reportada, los valores umbral no son reproducibles entre los diferentes trabajos<a class="elsevierStyleCrossRefs" href="#bib0420"><span class="elsevierStyleSup">12,39-45</span></a>.</p><elsevierMultimedia ident="tbl0035"></elsevierMultimedia><p id="par0215" class="elsevierStylePara elsevierViewall">En el presente trabajo, los valores medios obtenidos de SUVR integrado están de acuerdo con autores anteriores como Tiepolt et al.<a class="elsevierStyleCrossRef" href="#bib0590"><span class="elsevierStyleSup">46</span></a>. Además, nuestros valores umbral mostraron un rendimiento diagnóstico más alto que el publicado por otros autores<a class="elsevierStyleCrossRef" href="#bib0435"><span class="elsevierStyleSup">15</span></a>.</p><p id="par0220" class="elsevierStylePara elsevierViewall">El depósito de Aβ en la EA está muy extendido en todas las regiones corticales, aunque es mayor en las regiones diana, como el precúneo/cingulado posterior y el córtex frontal<a class="elsevierStyleCrossRefs" href="#bib0445"><span class="elsevierStyleSup">17,47-49</span></a>. Las series de autopsias han mostrado una densidad de placa de Aβ hasta 4 veces mayor en la corteza frontal que en la región temporal mesial en los estadios iniciales de la EA<a class="elsevierStyleCrossRefs" href="#bib0610"><span class="elsevierStyleSup">50,51</span></a>, mientras que el córtex visual y el córtex sensoriomotor primario generalmente no están involucrados hasta muy tarde en el curso de la enfermedad<a class="elsevierStyleCrossRef" href="#bib0620"><span class="elsevierStyleSup">52</span></a>. Nuestros resultados son concordantes, excepto para el córtex occipital, que mostró un SUVR similar en comparación con las regiones diana, lo que pone en evidencia la teoría difusa de Aβ.</p><p id="par0225" class="elsevierStylePara elsevierViewall">Además, la acumulación de Aβ comienza preferentemente en el córtex precúneo, orbitofrontal medial y cingulado posterior<a class="elsevierStyleCrossRef" href="#bib0625"><span class="elsevierStyleSup">53</span></a>. Por lo tanto, la evaluación de las regiones diana es importante para un diagnóstico más preciso y precoz de la EA<a class="elsevierStyleCrossRef" href="#bib0630"><span class="elsevierStyleSup">54</span></a>. En el presente análisis, los umbrales definidos de SUVR en las regiones diana mostraron la mejor AUC, con alta sensibilidad y especificidad para la clasificación PET obtenida en la evaluación visual. Además, aunque todas las regiones corticales, para la PET positiva y negativa, mostraron diferencias significativas, la corteza sensoriomotora y temporomesial mostró un poder diagnóstico menos discriminativo (<a class="elsevierStyleCrossRefs" href="#tbl0005">tablas 1 a 3</a>). Por lo tanto, parece existir un depósito preferencial en algunas áreas corticales específicas, sobre todo en los estudios PET positivos en comparación con los estudios PET negativos, que respaldan que los métodos de semicuantificación en evolución deben implicar un enfoque regional específico en lugar de un solo valor medio global.</p><p id="par0230" class="elsevierStylePara elsevierViewall">En un intento de reducir la variabilidad del SUVR se han desarrollado otros métodos, como el modelo independiente del SUVR basado en la captura de patrones de distribución de intensidad en lugar de recuentos reales en ROI predefinidas<a class="elsevierStyleCrossRef" href="#bib0635"><span class="elsevierStyleSup">55</span></a>. Otros tienen como objetivo integrar la información semicuantitativa obtenida de diferentes radiotrazadores de PET, derivando ecuaciones lineales para convertir el SUVR del <span class="elsevierStyleSup">18</span>F-florbetabén en unidades centiloides obtenidas a partir de PIB<a class="elsevierStyleCrossRefs" href="#bib0640"><span class="elsevierStyleSup">56,57</span></a>.</p><p id="par0235" class="elsevierStylePara elsevierViewall">La captación anormal de radiotrazadores en la EA utilizando PET Aβ tiende a ser difusa y, por lo tanto, simétrica, lo que afecta tanto a las estructuras lobares derechas como a las izquierdas<a class="elsevierStyleCrossRefs" href="#bib0590"><span class="elsevierStyleSup">46,58</span></a>. Para probar esta afirmación, nuestro objetivo fue extraer medidas semicuantitativas regionales para identificar las diferencias de distribución de radiotrazadores atendiendo a la ubicación y los hemisferios. Sin embargo, encontramos un mayor depósito de radiotrazador, tanto en las exploraciones PET positivas como en las negativas, en la corteza cingulada parietal derecha y en la corteza cingulada anterior y posterior izquierdas, aunque tales diferencias no superaron el 10%. Usando <span class="elsevierStyleSup">18</span>F-FDG, el patrón típico de hipometabolismo es bilateral y simétrico, aunque autores anteriores describieron un metabolismo de glucosa más bajo no explicado del aspecto lateral del lóbulo temporal izquierdo en comparación con el lóbulo derecho en sujetos normales<a class="elsevierStyleCrossRef" href="#bib0465"><span class="elsevierStyleSup">21</span></a>.</p><p id="par0240" class="elsevierStylePara elsevierViewall">El córtex cingulado posterior es un área muy conectada y una de las regiones metabólicamente más activas del cerebro. El flujo sanguíneo cerebral y la tasa metabólica son alrededor de un 40% más altos que el promedio en todo el cerebro. Su alta conectividad funcional significa extensas redes de conectividad intrínseca<a class="elsevierStyleCrossRefs" href="#bib0655"><span class="elsevierStyleSup">59,60</span></a>. Además, el córtex cingulado posterior se suele ver afectado por enfermedades neurodegenerativas y su metabolismo reducido suele ser un signo temprano de la EA<a class="elsevierStyleCrossRefs" href="#bib0655"><span class="elsevierStyleSup">59,61</span></a>. La anomalía metabólica está vinculada a la deposición de Aβ y a la atrofia cerebral, con una distribución espacial que se asemeja a los nodos de la red en modo predeterminado<a class="elsevierStyleCrossRef" href="#bib0655"><span class="elsevierStyleSup">59</span></a>. En la EA, la topología de la conectividad de la sustancia blanca ayuda a predecir patrones atróficos<a class="elsevierStyleCrossRef" href="#bib0670"><span class="elsevierStyleSup">62</span></a>, que posiblemente explican por qué la corteza cingulada posterior se ve afectada en las primeras etapas de la enfermedad<a class="elsevierStyleCrossRef" href="#bib0655"><span class="elsevierStyleSup">59</span></a>.</p><p id="par0245" class="elsevierStylePara elsevierViewall">La interpretación visual y los abordajes de diagnóstico cuantitativo mediante PET con <span class="elsevierStyleSup">18</span>F-FDG producen una sensibilidad similar de aalrededor del 85-95%, y una especificidad que oscila entre el 70% y el 90% en el diagnóstico de EA<a class="elsevierStyleCrossRef" href="#bib0675"><span class="elsevierStyleSup">63</span></a>. Respecto a la concordancia entre la valoración visual y los resultados semicuantitativos mediante PET con <span class="elsevierStyleSup">18</span>F-flutemetamol, la comparación de los diferentes métodos de la región de referencia mostró que la protuberancia y los datos normalizados del cerebelo global dieron resultados similares (98,8-99,4%), mientras que los datos normalizados a sustancia gris cerebelosa tuvieron una concordancia ligeramente menor con los resultados de la lectura visual (97,1-98,8%)<a class="elsevierStyleCrossRef" href="#bib0680"><span class="elsevierStyleSup">64</span></a>. Según nuestros datos, el SUVR en la protuberancia mostró una buena capacidad diagnóstica discriminativa, atendiendo a los valores medios. La correlación entre los métodos fue mayor para los SUVR normalizados a la protuberancia. Esto es posible que se explique por que la división con un número derivado de una región con baja captación es probable que agregue más variabilidad que si se utiliza una región captante.</p><p id="par0250" class="elsevierStylePara elsevierViewall">En nuestro análisis, utilizando umbrales del análisis ROC, se obtuvo un buen resultado diagnóstico de SUVR en las regiones diana. Utilizando 1,30 como punto de corte, los casos evaluados como positivos o negativos por acuerdo completo tendieron a mostrar un SUVR mayor o menor, respectivamente, que los casos en los que hubo discrepancia de cualquiera de los observadores. Además, el diagnóstico erróneo de 5/8 correspondió a casos con desacuerdo visual entre observadores.</p><p id="par0255" class="elsevierStylePara elsevierViewall">Otros autores ya han abordado la contribución adicional que la cuantificación de la captación relativa de <span class="elsevierStyleSup">18</span>F-florbetabén optimizada, utilizando puntos de corte de SUVR, puede tener para el análisis visual realizado por lectores no expertos<a class="elsevierStyleCrossRef" href="#bib0585"><span class="elsevierStyleSup">45</span></a>, mientras que otros encontraron un mayor acuerdo utilizando SUVR (cuantitativo) que con el análisis visual (κ de 0,69 vs. 0,92, respectivamente)<a class="elsevierStyleCrossRef" href="#bib0510"><span class="elsevierStyleSup">30</span></a>.</p><p id="par0260" class="elsevierStylePara elsevierViewall">La amiloidosis cerebral relacionada con la edad se observa sobre todo en pacientes mayores<a class="elsevierStyleCrossRef" href="#bib0685"><span class="elsevierStyleSup">65</span></a>, por lo tanto, para minimizar el papel confusor de la influencia de la edad en la evaluación visual y la semicuantificación, algunos autores afirmaron que las exploraciones PET Aβ deben hacerse siguiendo los criterios de uso apropiados<a class="elsevierStyleCrossRef" href="#bib0690"><span class="elsevierStyleSup">66</span></a> y ponderarse de forma cuidadosa en pacientes mayores (por ejemplo,<span class="elsevierStyleHsp" style=""></span>>75 años)<a class="elsevierStyleCrossRef" href="#bib0495"><span class="elsevierStyleSup">27</span></a>.</p><p id="par0265" class="elsevierStylePara elsevierViewall">En cuanto a la influencia de la edad en la distribución del radiotrazador, aunque el grupo de positividad de PET Aβ fue mayor que el grupo Aβ negativo, como han publicado otros autores<a class="elsevierStyleCrossRef" href="#bib0695"><span class="elsevierStyleSup">67</span></a>, no se encontraron diferencias estadísticas de los valores medios entre las exploraciones positivas y negativas para pacientes mayores o menores de 65 años.</p><p id="par0270" class="elsevierStylePara elsevierViewall">Con respecto al IMC, encontramos que los pacientes con PET positivo tenían un IMC más bajo que el grupo negativo. Tanto la obesidad como el bajo peso se han relacionado con un mayor riesgo de demencia. Series con gran número de pacientes han señalado una asociación entre un IMC bajo y un mayor riesgo de demencia en personas mayores, pero sigue siendo controvertido si se trata de una relación causal o es, simplemente, una consecuencia<a class="elsevierStyleCrossRefs" href="#bib0700"><span class="elsevierStyleSup">68,69</span></a>.</p><p id="par0275" class="elsevierStylePara elsevierViewall">En cuanto a las limitaciones, no se analizó el efecto de factores de confusión como la enfermedad cerebrovascular. Trabajos anteriores demostraron que los pacientes con alto nivel de lesiones de la sustancia blanca presentaron SUVR integrados significativamente más altos que el grupo que tenía pocas lesiones<a class="elsevierStyleCrossRefs" href="#bib0710"><span class="elsevierStyleSup">70,71</span></a>.</p><p id="par0280" class="elsevierStylePara elsevierViewall">La evaluación visual, utilizada como estándar de referencia, pudo abordar interpretaciones falsas positivas basadas en los criterios de interpretación poco restrictivos (solo fue necesaria una región cortical positiva para establecer la positividad). Además, aunque el presente trabajo reportó un número limitado de casos con desacuerdos (posibles clasificaciones erróneas), para establecer conclusiones generalizadas parece que es necesaria una evaluación cortical más global para clasificar un estudio como positivo.</p><p id="par0285" class="elsevierStylePara elsevierViewall">Sobre las fortalezas, el presente trabajo aborda, a pesar de un depósito difuso y ligeramente asimétrico, el depósito preferencial de Aβ en regiones diana en comparación con el resto de regiones corticales, especialmente en regiones de redes de alta conectividad, como el cingulado anterior y posterior, tanto en estudios positivos como negativos.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Conclusiones</span><p id="par0290" class="elsevierStylePara elsevierViewall">La información obtenida de áreas corticales específicas puede evitar las discordancias interobservador y parece ayudar a la clasificación visual, basada en un depósito preferencial de Aβ, lo que permite el aprendizaje automático. El depósito de Aβ, aunque difuso en todas las regiones corticales, parece no ser uniforme y simétrico, aunque esta circunstancia debería abordarse en futuros trabajos.</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Financiación</span><p id="par0295" class="elsevierStylePara elsevierViewall">Sin financiación.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Conflicto de intereses</span><p id="par0300" class="elsevierStylePara elsevierViewall">Los autores declaran que no tienen conflicto de intereses.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">No hay descargo de responsabilidad</span><p id="par0305" class="elsevierStylePara elsevierViewall">Todos los autores han participado en la redacción y revisión de este artículo y asumen la responsabilidad pública de su contenido. La presente publicación ha sido aprobada por todos los autores y por las autoridades responsables del lugar donde se realizó el trabajo.</p><p id="par0310" class="elsevierStylePara elsevierViewall">Todos los autores confirman que el artículo no está en consideración para su publicación en otro lugar.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0160">Cumplimiento de las normas éticas</span><p id="par0315" class="elsevierStylePara elsevierViewall">No hay financiación.</p><p id="par0320" class="elsevierStylePara elsevierViewall">Los autores declaran no tener conflicto de intereses.</p><p id="par0325" class="elsevierStylePara elsevierViewall">Todos los procedimientos realizados en los estudios con participantes humanos se ajustaron a las normas éticas del comité de investigación institucional y/o nacional y con la declaración de Helsinki de 1964 Declaración de Helsinki y sus enmiendas posteriores o normas éticas comparables.</p><p id="par0330" class="elsevierStylePara elsevierViewall">Se obtuvo el consentimiento informado de todos los participantes individuales incluidos en el estudio.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:14 [ 0 => array:3 [ "identificador" => "xres1707697" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Material y métodos" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusiones" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1510564" "titulo" => "Palabras clave" ] 2 => array:3 [ "identificador" => "xres1707696" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Aim" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusions" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1510565" "titulo" => "Keywords" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introducción" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Material y métodos" "secciones" => array:7 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Pacientes" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Imágenes PET/TC" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Análisis PET/TC" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Lectura visual" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Análisis semicuantitativo" ] 5 => array:3 [ "identificador" => "sec0040" "titulo" => "Análisis estadístico" "secciones" => array:1 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Lectura visual" ] ] ] 6 => array:2 [ "identificador" => "sec0050" "titulo" => "Análisis semicuantitativo" ] ] ] 6 => array:3 [ "identificador" => "sec0055" "titulo" => "Resultados" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0060" "titulo" => "Lectura visual" ] 1 => array:2 [ "identificador" => "sec0065" "titulo" => "Análisis semicuantitativo" ] ] ] 7 => array:2 [ "identificador" => "sec0070" "titulo" => "Discusión" ] 8 => array:2 [ "identificador" => "sec0075" "titulo" => "Conclusiones" ] 9 => array:2 [ "identificador" => "sec0080" "titulo" => "Financiación" ] 10 => array:2 [ "identificador" => "sec0085" "titulo" => "Conflicto de intereses" ] 11 => array:2 [ "identificador" => "sec0090" "titulo" => "No hay descargo de responsabilidad" ] 12 => array:2 [ "identificador" => "sec0095" "titulo" => "Cumplimiento de las normas éticas" ] 13 => array:1 [ "titulo" => "Bibliografía" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2020-12-13" "fechaAceptado" => "2021-01-27" "PalabrasClave" => array:2 [ "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1510564" "palabras" => array:7 [ 0 => "<span class="elsevierStyleSup">18</span>F-Florbetaben" 1 => "PET/TC" 2 => "Beta-amiloide" 3 => "Semicuantificación" 4 => "Diferencias interhemisféricas" 5 => "Regiones “diana”" 6 => "Machine learning" ] ] ] "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1510565" "palabras" => array:7 [ 0 => "<span class="elsevierStyleSup">18</span>F-Florbetaben" 1 => "PET/CT" 2 => "Amyloid beta" 3 => "Semiquantification" 4 => "Interhemisphere differences" 5 => "Target regions" 6 => "Machine learning" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Objetivo</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Determinar el valor a-adido de los parámetros semicuantitativos en el análisis visual y estudiar los patrones del depósito cerebral de <span class="elsevierStyleSup">18</span>F-Florbetaben.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Material y métodos</span><p id="spar0145" class="elsevierStyleSimplePara elsevierViewall">Análisis retrospectivo de pacientes con deterioro cognitivo leve o demencia de origen incierto procedentes de un estudio multicentrico. Los PET con <span class="elsevierStyleSup">18</span>F-Florbetaben fueron interpretados de forma visual por dos observadores independientes, analizando las regiones “diana” con la finalidad de calcular el acuerdo interobservador. Se realizó análisis semicuantitativo de todas las regiones corticales con respecto a tres regiones de referencia para obtener índices de captación (SUVRs). Se analizó la capacidad de los SUVRs para predecir el resultado de la interpretación visual, la posibilidad de depósito preferencial del radiotrazador en algunas regiones “diana” así como las diferencias interhemisféricas.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Resultados</span><p id="spar0150" class="elsevierStyleSimplePara elsevierViewall">Se evaluaron 135 pacientes. En la valoración visual, 72 estudios se clasificaron como positivos. El acuerdo interobservador fue excelente. Todos los SUVRs fueron significativamente superiores en pacientes con PET positivos con respecto a los negativos. Las regiones corticales correspondientes al área prefrontal y al cingulado posterior mostraron la mejor correlación con la evaluación visual, seguidas por la valoración integrada cortical. Usando análisis de ROC, los SUVRs obtenidos en las mismas regiones “diana” mostraron la mejor capacidad diagnóstica.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusiones</span><p id="spar0155" class="elsevierStyleSimplePara elsevierViewall">La información obtenida de las regiones “diana” parece ser de ayuda en la clasificación visual, basado en un depósito preferencial de amiloide, lo que permitiría el “machine learning”. El depósito de amiloide, aunque difuso en todas las regiones corticales, parece no ser uniforme ni simétrico.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Material y métodos" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusiones" ] ] ] "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Aim</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">To assess the added value of semiquantitative parameters on the visual assessment and to study the patterns of <span class="elsevierStyleSup">18</span>F-Florbetaben brain deposition.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Materials and methods</span><p id="spar0160" class="elsevierStyleSimplePara elsevierViewall">Retrospective analysis of multicenter study performed in patients with mild cognitive impairment or dementia of uncertain origin. <span class="elsevierStyleSup">18</span>F-Florbetaben PET scans were visually interpreted by two experienced observers, analyzing target regions in order to calculate the interobserver agreement. Semiquantification of all cortical regions with respect to three reference regions was performed to obtain standardized uptake value ratios (SUVRs). The ability of SUVRs to predict the visual evaluation, the possibility of preferential radiotracer deposition in some target regions and interhemisphere differenceswere analyzed.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Results</span><p id="spar0165" class="elsevierStyleSimplePara elsevierViewall">135 patients were evaluated. In the visual assessment, 72 were classified as positive. Interobserver agreement was excellent. All SUVRs were significantly higher in positive PET scans than in negative ones. Prefrontal area and posterior cingulate were the cortical regions with the best correlations with the visual evaluation, followed by the composite region. Using ROC analysis, the SUVRs obtained in same target locations showed the best diagnostic performance.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusions</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">The derived information from target regions seems to help the visual classification, based on a preferential amyloid deposit, allowing machine learning. The amyloid deposit, although diffuse in all cortical regions, seems not to be uniform and symmetric.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Aim" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusions" ] ] ] ] "multimedia" => array:10 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1302 "Ancho" => 1755 "Tamanyo" => 228389 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Representación de volúmenes de interés de diferentes regiones corticales en cortes axiales (de A a D), coronal (E) y sagital (F) de un estudio PET/TC con <span class="elsevierStyleSup">18</span>F-florbetabén positivo.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1459 "Ancho" => 1755 "Tamanyo" => 226111 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">A) Cortes axiales de un caso sin acuerdo completo entre observadores. El SUVR cortical integrado/cerebelo gris fue de 1,26 (inferior al punto de corte para la positividad). B) Los cortes coronales son representativos de un estudio negativo con el patrón típico de ramas de árboles.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figura 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1600 "Ancho" => 1755 "Tamanyo" => 236904 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">A) Cortes axiales de un caso positivo con acuerdo total entre observadores. El SUVR integrado córtex/cerebelo gris fue de 1,78 (superior al punto de corte para positividad). B) Los cortes coronales son representativos de un estudio con el patrón típico de PET positivo.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Tabla 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">DE: desviación estándar.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Acuerdo visual \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>DE (rango) hemisferio derecho \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>DE (rango) hemisferio izquierdo \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">T derecha \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">T izquierda \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Integrada</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,63<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,25 (1,02-2,31)</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15,68</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,14<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,94-1,38)</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Prefrontal</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,60<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,24 (0,95-2,27) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,61<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,24 (1,01-2,23) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16,23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15,81 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,09<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,86-1,32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,10<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,11 (0,82-1,32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cingulado anterior</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,66<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,29 (0,93-2,27) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,72<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,28 (1,02-2,26) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13,62 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13,28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,14<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,89-1,52) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,22<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,13 (0,93-1,58) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cingulado posterior</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,75<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,29 (1,02-2,55) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,79<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,27 (1,11-2,54) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16,83 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17,14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,15<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,96-1,37) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,19<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (0,98-1,45) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Parietal</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,62<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,26 (1,01-2,24) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,58<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,24 (0,97-2,32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,37 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,85 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,15<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (0,94-1,36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,12<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (0,90-1,35) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Temporal lateral</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,62<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,26 (1,03-2,34) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,63<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,26 (1,00-2,35) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12,58 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13,14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,18<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,92-1,56) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,18<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,92-1,53) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Occipital</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,57<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,25 (1,23-2,56) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,57<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,23 (1,19-2,42) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10,51 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11,04 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,25<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,08 (1,09-1,49) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,25<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,08 (1,09-1,46) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Sensoriomotor</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,43<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,22 (0,97-2,13) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,43<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,20 (1,00-2,11) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9,28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9,44 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,17<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,11 (0,95-1,41) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,16<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,11 (0,91-1,41) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Temporomesial</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,20<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,97-1,59) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,21<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,99-1,58) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5,13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5,09 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,11<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,08 (0,96-1,31) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,12<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,08 (0,95-1,31) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2900164.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Valores de índices de localizaciones corticales al cerebelo gris y sus diferencias</p>" ] ] 4 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Tabla 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">DE: desviación estándar.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Acuerdo visual \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>DE (rango) hemisferio derecho \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>DE (rango) hemisferio izquierdo \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">T derecha \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">T izquierda \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Integrada</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,48<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,20 (0,95-1,90)</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17,04</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,02<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (0,52-1,29)</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Prefrontal</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,45<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,20 (0,90-1,87) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,45<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,19 (0,94-1,84) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17,48 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17,08 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">?0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,98<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (0,51-1,24) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,99<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,11 (0,51-1,22) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cingulado anterior</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,50<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,24 (0,86-1,96) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,57<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,23 (0,94-1,95) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,74 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,69 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,02<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,56-1,37) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,09<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,13 (0,61-1,49) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cingulado posterior</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,58<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,23 (0,97-2,16) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,62<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,22 (1,05-2,17) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16,11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18,94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,04<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,15 (0,57-1,95) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,07<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (0,59-1,30) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Parietal</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,47<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,21 (0,91-1,98) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,42<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,20 (0,85-1,85) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15,51 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15,26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,03<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1,11 (0,54-1,28) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,00<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,11 (0,52-1,27) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Temporal lateral</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,46<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,22 (0,93-1,94) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,47<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,21 (0,90-1,88) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13,57 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,12 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,06<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,49-1,46) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,06<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 (0,49-1,39) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Occipital</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,43<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,20 (1,14-2,04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,43<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,19 (1,08-1,93) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11,56 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12,19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,12<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,63-1,38) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,12<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,64-1,37) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Sensoriomotor</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,30<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1,18 (0,92-1,70) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,29<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,16 (0,95-1,68) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10,11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10,40 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,05<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,11 (0,53-1,32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,04<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,11 (0,51-1,27) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Temporomesial</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,09<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,88-1,36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,10<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,10 (0,91-1,34) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6,29 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5,95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,00<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,08 (0,56-0,15) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,00<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,58-1,21) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2900158.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Valores de índices de localizaciones corticales al cerebelo total y sus diferencias</p>" ] ] 5 => array:8 [ "identificador" => "tbl0015" "etiqueta" => "Tabla 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at3" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0090" class="elsevierStyleSimplePara elsevierViewall">DE: desviación estándar.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Acuerdo visual \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>DE (rango) hemisferio derecho \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Media<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>DE (rango) hemisferio izquierdo \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">T derecha \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">T izquierda \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Integrada</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,90<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,16 (0,55-1,43)</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15,79</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,58<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,43-0,76)</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Prefrontal</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,89<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,15 (0,54-1,41) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,89<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,15 (0,54-1,38) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16,50 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16,13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,56<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,40-0,72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,56<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,07 (0,37-0,74) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cingulado anterior</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,91<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,18 (0,47-1,41) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,96<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,18 (0,52-1,40) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,58<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,08 (0,40-0,88) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,62<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,08 (0,42-0,92) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cingulado posterior</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,97<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,18 (0,59-1,58) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,99<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,18 (0,60-1,58) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16,94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17,26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,58<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,48-0,77) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,61<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,49-0,84) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Parietal</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,89<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,15 (0,53-1,39) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,87<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,16 (0,49-1,44) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15,19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,56 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,58<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,07 (0,42-0,78) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,57<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,07 (0,41-0,73) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Temporal lateral</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,89<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,17 (0,54-1,45) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,90<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,17 (0,52-1,46) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13,46 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14,06 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,60<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,07 (0,42-0,78) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,60<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,07 (0,43-0,76) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Occipital</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,87<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,17 (0,59-1,59) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,87<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,16 (0,62-1,50) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10,90 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11,52 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,63<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,50-0,80) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,64<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,50-0,79) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Sensoriomotor</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,79<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,14 (0,51-1,32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,79<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,14 (0,52-1,31) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10,95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10,91 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,59<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,44-0,71) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,59<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,06 (0,43-0,73) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Temporomesial</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Positivo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,66<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,61-0,99) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,67<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,09 (0,50-0,98) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8,33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8,11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Negativo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,56<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,05 (0,46-0,70) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,57<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,05 (0,43-0,69) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2900161.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">Valores de índices de localizaciones corticales a la protuberancia y sus diferencias</p>" ] ] 6 => array:8 [ "identificador" => "tbl0020" "etiqueta" => "Tabla 4" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at4" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0100" class="elsevierStyleSimplePara elsevierViewall">D: derecha; L: izquierda.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Región de referencia: cerebelo gris \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">t \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Región de referencia: cerebelo total \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">t \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Región de referencia: protuberancia \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">t \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prefrontal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,385 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,701 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prefrontal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,568 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,572 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prefrontal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,411 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,683 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado anterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−3,817 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado anterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−9,691 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado anterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−9,756 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado posterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−4,254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado posterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−4,337 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado posterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−4,340 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Parietal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2,325 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,023 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Parietal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5,185 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Parietal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4,617 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporal lateral D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,885 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,379 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporal lateral D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,129 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,263 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporal lateral D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,723 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,472 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Occipital D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,136 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,892 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Occipital D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,015 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,988 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Occipital D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,265 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,792 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sensoriomotor D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,138 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,259 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sensoriomotor D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,239 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,220 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sensoriomotor D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,529 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,131 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporomesial D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,886 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,063 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporomesial D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,711 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,091 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporomesial D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,296 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,768 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2900160.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0095" class="elsevierStyleSimplePara elsevierViewall">Diferencias interhemisféricas en los estudios PET <span class="elsevierStyleSup">18</span>F-florbetabén positivos</p>" ] ] 7 => array:8 [ "identificador" => "tbl0025" "etiqueta" => "Tabla 5" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at5" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0110" class="elsevierStyleSimplePara elsevierViewall">D: derecha; I:izquierda.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Referencia: cerebelo gris \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">t \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Referencia: cerebelo total \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">t \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Referencia: protuberancia \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">t \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prefrontal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,252 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,215 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prefrontal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,135 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,261 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prefrontal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,983 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,329 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado anterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−13,130 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado anterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−13,157 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado anterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−11,872 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado posterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−8,565 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado posterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,526 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,132 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cingulado posterior D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−7,988 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Parietal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6,723 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Parietal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6,126 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Parietal D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4,926 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporal lateral D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,078 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,285 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporal lateral D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,279 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,781 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporal lateral D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,928 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,357 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Occipital D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,959 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,341 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Occipital D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,995 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,324 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Occipital D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0,995 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,324 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sensoriomotor D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,972 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,335 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sensoriomotor D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,412 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,163 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sensoriomotor D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,097 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,277 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporomesial D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,134 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,261 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporomesial D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,215 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,229 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Temporomesial D vs. I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1,146 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,256 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2900159.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0105" class="elsevierStyleSimplePara elsevierViewall">Diferencias interhemisféricas en los estudios PET <span class="elsevierStyleSup">18</span>F-florbetabén negativos</p>" ] ] 8 => array:8 [ "identificador" => "tbl0030" "etiqueta" => "Tabla 6" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at6" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0120" class="elsevierStyleSimplePara elsevierViewall">AUC: área bajo la curva (del inglés, <span class="elsevierStyleItalic">area under curve</span>); D: derecha; I: izquierda; IC: intervalo de confianza; RR: región de referencia; Se: sensibilidad; Sp: especificidad.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Localizaciones/RR \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">AUC \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Valor de <span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">IC 95% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Punto de corte \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Se (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Sp (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="7" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cerebelo gris</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Integrada \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,956 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,917-0,995 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Prefrontal D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,958 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,920-0,995 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">92 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Prefrontal I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,951 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,909-0,992 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,27 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">92 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cingulado posterior D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,974 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,943-1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">97 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cingulado posterior I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,973 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,943-1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,36 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="7" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Cerebelo total</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Integrada \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,966 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,932-1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Prefrontal D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,967 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,935-0,999 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Prefrontal I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,963 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,930-0,996 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cingulado posterior D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,965 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,927-1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,22 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cingulado posterior I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,983 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,963-1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">96 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="7" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Protuberancia</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Integrada \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,965 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,936-0,994 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,66 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">92 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Prefrontal D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,972 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,948-0,996 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,66 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">90 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Prefrontal I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,966 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,937-0,994 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,64 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">82 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cingulado posterior D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,981 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,963-0,999 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,68 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cingulado posterior I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,984 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0,001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,968-1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,70 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">92 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2900163.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0115" class="elsevierStyleSimplePara elsevierViewall">Umbrales de SUVR obtenidos en el análisis ROC efectivos para la clasificación de un estudio PET con <span class="elsevierStyleSup">18</span>F-florbetabén positivo</p>" ] ] 9 => array:8 [ "identificador" => "tbl0035" "etiqueta" => "Tabla 7" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at7" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0135" class="elsevierStyleSimplePara elsevierViewall">Aβ: β amiloide; APOE: apolipoproteína E; CN: cognitivo normal; CS: controles sanos; DCL: deterioro cognitivo leve; DCS: deterioro cognitivo subjetivo; EA: enfermedad de Alzheimer; FTLD: demencia del lóbulo frontotemporal; pb: probable; ps: posible; SUVR: relación del valor de la captación estandarizada.</p><p id="spar0140" class="elsevierStyleSimplePara elsevierViewall">Todas las regiones de referencia: cerebelo gris; cerebelo total, protuberancia y sustancia blanca subcortical.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Autor, año [ref] \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Objetivo y estándar de referencia \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">n \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Áreas cuantificadas \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Región de referencia \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Resultados \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Rowe, 2008<a class="elsevierStyleCrossRef" href="#bib0650"><span class="elsevierStyleSup">58</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: efectividad en la identificación de pacientes con EA. Estándar de referencia: diagnóstico clínico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 EA leve15 CS5 FTLD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prefrontal dorsolateral y ventrolateral, orbitofrontal, giro recto, cingulado anterior, cingulado posterior, parietal, occipital, lateral y mesial temporal, núcleos caudados, putamen, tálamo, mesencéfalo, protuberancia, sustancia blanca, neocórtex \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Todos los pacientes con EA mostraron una captación neocortical generalizada, que fue mayor en el precúneo/cingulado posterior y la corteza frontal.A los 90-120<span class="elsevierStyleHsp" style=""></span>min después de la inyección se observó un SUVR más alto neocortical en los pacientes con EA (2,0) que en los controles sanos (1,3) o en pacientes con FTLD (1,2) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Barthel, 2011<a class="elsevierStyleCrossRef" href="#bib0590"><span class="elsevierStyleSup">46</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: diferenciación de pacientes con probable EA de CS. Estándar de referencia: diagnóstico clínico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">81 EA69 CS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal, mesial y lateral temporal, parietal, occipital, cingulado anterior y posterior, cabeza del caudado, putamen, tálamo, protuberancia/mesencéfalo y sustancia blanca (centro semioval) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Los umbrales que separaron de manera óptima a los pacientes con EA y CS fueron 1,57 y 1,39 para el cingulado posterior y el integrado, respectivamente \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Becker, 2013<a class="elsevierStyleCrossRef" href="#bib0555"><span class="elsevierStyleSup">39</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: viabilidad de enfoques basados en modelos cinéticos y SUVR como parámetro de unión a Aβ. Estándar de referencia: diagnóstico clínico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10 EA10 CS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal, parietal, temporal lateral y cingulado posterior \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Los parámetros de unión a Aβ, incluido el SUVR, son excelentes para discriminar entre exploraciones positivas y negativas de Aβ.Valores medios de 1,79<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,14 y de 1,30<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,12 en EA y CS, respectivamente \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ong, 2015<a class="elsevierStyleCrossRef" href="#bib0560"><span class="elsevierStyleSup">40</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: evaluación de la exactitud pronóstica para la progresión en el DCL. Estándar de referencia: diagnóstico clínico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45 DCL15 CS15 pb EA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal (que consiste en regiones prefrontales y orbitofrontales dorsolaterales y ventrolaterales), parietal superior, temporal lateral, occipital lateral y cingulado anterior y posterior \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Un SUVR ≥ 1,45 se asoció con un deterioro más grave de la memoria en la DCL, lo que facilitó la detección precisa de la EA prodrómica \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Catafau, 2016<a class="elsevierStyleCrossRef" href="#bib0565"><span class="elsevierStyleSup">41</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: evaluar la influencia de la patología Aβ en el SUVR cuando se utiliza el cerebelo como referencia. Estándar de referencia: patología \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">87 (9 CS) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal, occipital, cingulado anterior y cingulado posterior \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Rangos de SUVR de 0,91-2,37, 1,10-2,13, 0,83-2,49 y 0,95-2,84 en corteza frontal, corteza occipital, cingulado anterior y cingulado posterior, respectivamente \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tuszynski, 2016<a class="elsevierStyleCrossRef" href="#bib0570"><span class="elsevierStyleSup">42</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: probar las herramientas automatizadas de definición de VOI neuroanatómicas y su capacidad para sustituir la definición manual de VOI.Referencia estándar: histología \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10 EA10 CS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal, parietal, temporal lateral, temporal mesial, occipital, cingulado anterior, cingulado posterior y precúneo, cabeza del núcleo caudado, putamen, tálamo, sustancia blanca, corteza cerebelosa y protuberancia/ mesencéfalo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Se observaron pequeñas diferencias en la discriminación EA vs. CS por los SUVR regionales obtenidos, así como en el grado de correlación entre los SUVR de los abordajes automático y manual \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Choi, 2016<a class="elsevierStyleCrossRef" href="#bib0595"><span class="elsevierStyleSup">47</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: examinar y comparar 2 herramientas cuantitativas automatizadas (PMOD y MIMneuro). Estándar de referencia: PMOD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 EA15 CS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Corteza frontal (giro frontal medial inferior), córtex temporal lateral, córtex parietal (lóbulo parietal superior), cingulado anterior, cingulado posterior y precúneo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MIMneuro proporciona un rendimiento comparable al de PMOD. La EA y los CS mostraron una media global de SUVR de 1,96 y 1,39, respectivamente (PMOD) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bullich, 2017<a class="elsevierStyleCrossRef" href="#bib0585"><span class="elsevierStyleSup">45</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: evaluar el valor añadido de la categorización del punto de corte del SUVR al análisis visual. Estándar de referencia: histología en 78 caso \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">75 EA68 CS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal, parietal, temporal lateral, occipital y cingulado (anterior y posterior) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Todas \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Puntos de corte de los valores integrados para las regiones de referencia de cerebelo gris, cerebelo total, protuberancia y sustancia blanca subcortical de 1,43, 0,96, 0,78 y 0,71, respectivamente.Contribución adicional de la captación optimizada de radiotrazador al análisis visual realizado por lectores no expertos \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Presotto, 2018<a class="elsevierStyleCrossRef" href="#bib0410"><span class="elsevierStyleSup">10</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: describir y validar un procedimiento para la normalización espacial de imágenes PET basado en el TC de baja dosis. Estándar de referencia: no referido \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34 casos mixtos \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal, parietal, temporal lateral, lateral, occipital, cingulado y precúneo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Altos niveles de concordancia en los resultados de la semicuantificación, en comparación con la transformación espacial basada en RM como patrón estándar SUVR cortical total de 1,30 para TC y 1,35 para los procedimientos basados en RM \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Florek, 2018<a class="elsevierStyleCrossRef" href="#bib0575"><span class="elsevierStyleSup">43</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: investigar el potencial de la PET FBB de doble punto de tiempo para proporcionar información de biomarcadores de EA dual. Estándar de referencia: diagnóstico clínico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">41 DCL, 50 pb/ps EA, 21 otros \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SUVR integrados para los datos de PET tardíos (promediando los SUVR de las cortezas bilaterales frontal, parietal, temporal lateral, occipital y cingulada) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Todas y las regiones corticales preservadas \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Los SUVR integrados de fase tardía fueron significativamente más altos (1,65<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,23 vs. 1,15<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,17, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0,005) en pacientes Aβ positivos vs. Aβ negativos \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Duara, 2019<a class="elsevierStyleCrossRef" href="#bib0435"><span class="elsevierStyleSup">15</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: determinar el umbral cuantitativo de positividad amiloide considerando diferentes factores y genotipo APOE.Estándar de referencia: análisis visual \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">159 (47 CS) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Frontal, parietal, temporal, cingulado posterior y precúneo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">El valor de corte óptimo de SUVR para la positividad Aβ entre todos los participantes fue de 1,42.Los SUVR medio estuvieron influidos por la edad, el estado cognitivo y el estado del portador de APOEɛ4. Solo el estado de portador de APOEɛ4 tuvo un impacto en el umbral óptimo de positividad amiloide \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Alongi, 2019<a class="elsevierStyleCrossRef" href="#bib0440"><span class="elsevierStyleSup">16</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: probar el rendimiento de la PET amiloide para un diagnóstico más preciso de la EA.Estándar de referencia: diagnóstico clínico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22 EA, 22 mixto \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Giro frontal, parietal, occipital, precúneo, lóbulo paracentral y angular \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo sustancia blanca \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Un valor de SUVR de 1,00 en la corteza frontal inferior y de 1,03 en la región precúnea fue el mejor valor de corte de SUVR y mostró una buena correlación con el diagnóstico de EA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hong, 2019<a class="elsevierStyleCrossRef" href="#bib0715"><span class="elsevierStyleSup">71</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: evaluar la utilidad de un cuestionario de autoinforme y biomarcadores de neuroimagen en sujetos con DCS.Estándar de referencia: diagnóstico clínico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">31 DCS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Plantilla basada en volúmenes, que incorpora 90 regiones de interés \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo gris \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">El 25,8% mostraron depósitos Aβ positivos.Los valores medios globales de SUVR fueron de 1,169<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,052 en DCS Aβ negativos y 1,461<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,207 en DCS Aβ positivos \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tahmi, 2019<a class="elsevierStyleCrossRef" href="#bib0580"><span class="elsevierStyleSup">44</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Objetivo: proponer un método de cuantificación automática del espacio nativo que reduzca la complejidad del problema de deformación entre sujetos a una alineación de cuerpo rígido dentro del sujeto.Estándar de referencia: patología \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">33 pb EA, 12 mixto \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Giro frontal medio, corteza cingulada anterior, corteza cingulada posterior, precúneo, hipocampo, giro parahipocampal, corteza occipital \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cerebelo total \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">El método nativo resultó en SUVR consistentes y significativamente más altos en comparación con el método convencional en casi todas las regiones de interés.SUVR cingulado posterior de 1,53<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0,29 en casos de densidad frecuente de placa neurítica \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2900162.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0125" class="elsevierStyleSimplePara elsevierViewall">SUVR informado utilizando la semicuantificación cortical de la PET con <span class="elsevierStyleSup">18</span>F-florbetabén en la clasificación del paciente</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "Bibliografía" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:71 [ 0 => array:3 [ "identificador" => "bib0365" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The amyloid hypothesis of Alzheimer's disease at 25 years" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.J. Selkoe" 1 => "J. Hardy" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.15252/emmm.201606210" "Revista" => array:7 [ "tituloSerie" => "EMBO Mol Med." "fecha" => "2016" "volumen" => "8" "paginaInicial" => "595" "paginaFinal" => "608" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27025652" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0007091217302076" "estado" => "S300" "issn" => "00070912" ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0370" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.R. Jack Jr." 1 => "D.S. Knopman" 2 => "W.J. Jagust" 3 => "L.M. Shaw" 4 => "P.S. Aisen" 5 => "M.W. Weiner" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S1474-4422(09)70299-6" "Revista" => array:6 [ "tituloSerie" => "Lancet Neurol." "fecha" => "2010" "volumen" => "9" "paginaInicial" => "119" "paginaFinal" => "128" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20083042" "web" => "Medline" ] ] ] ] ] ] ] ]