Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología Relación entre el estrés oxidativo mitocondrial y la velocidad del envejecimie...
Información de la revista
Vol. 40. Núm. 4.
Páginas 243-249 (Agosto 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 40. Núm. 4.
Páginas 243-249 (Agosto 2005)
Revisión
Acceso a texto completo
Relación entre el estrés oxidativo mitocondrial y la velocidad del envejecimiento
Relationship between mitochondrial oxidative stress and rate of ageing
Visitas
7418
G. Barja
Autor para correspondencia
gbarja@bio.ucm.es

Correspondencia: Dr. G. Barja. Departamento de Fisiología Animal-II. Facultad de Biología. Universidad Complutense de Madrid. Antonio Novais, 2. 28040 Madrid. España.
Departamento de Biología Animal-II. Fisiología Animal. Facultad de Biología. Universidad Complutense de Madrid. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Aunque se han propuesto muchas teorías diferentes sobre las causas del envejecimiento, la teoría de los radicales libres es la que disfruta de más apoyos a su favor en la bibliografía científica. En el presente artículo se revisan los trabajos publicados sobre la relación entre la longevidad máxima de las distintas especies animales y sus valores endógenos de antioxidantes y de generación de radicales de oxígeno. La mayoría de los estudios sobre suplementación experimental con antioxidantes indican que pueden aumentar la esperanza de vida pero no cambian la longevidad máxima. Además, los antioxidantes endógenos correlacionan de forma negativa con la longevidad máxima. Sin embargo, la intensidad de producción mitocondrial de radicals de oxígeno y el daño oxidativo al ADN mitocondrial son menores en los animales longevos que en los de vida corta. Los animales longevos también muestran un menor grado de insaturación de los ácidos grasos de sus membranas tisulares que las especies de vida corta. Por otra parte, la restricción calórica, la única manipulación experimental que disminuye la velocidad del envejecimiento, también disminuye la producción mitocondrial de radicales libres y el daño oxidativo al ADN mitocondrial. Este descenso ocurre en el complejo I. Estos resultados sugieren que se han utilizado mecanismos similares para aumentar la longevidad en la restricción calórica y durante la evolución de especies animales con distinta velocidad de envejecimiento, y que dichos mecanismos incluyen un descenso en el estrés oxidativo mitocondrial.

Palabras clave:
Radicales libres
Mitocondrias
Envejecimiento
Longevidad
ADN
Abstract

Although many theories have been put forward on the causes of ageing, the explanation that has received greatest support in the scientific literature is the free radical theory. The present article reviews the studies published on the relationship between maximal longevity of the distinct animal species and their endogenous antioxidant levels and oxygen radical generation. Most studies on experimental supplementation with antioxidants indicate that they can increase life expectancy but do not change maximal longevity. Moreover, endogenous antioxidants are negatively correlated with maximal longevity. However, the intensity of mitochondrial production of oxygen radicals and oxidative damage to mitochondrial DNA are lower in longevous animals than in shortlived animals. Longevous animals also show a lower grade of fatty acid unsaturation in tissue membranes than short-lived species. Caloric restriction, the only experimental procedure that reduces the rate of ageing, also reduces mitochondrial production of free radicals and oxidative damage to mitochondrial DNA. This decrease occurs in complex I. These results suggest that similar mechanisms are used to increase longevity in caloric restriction and during the evolution of animal species with different rates of ageing and that these mechanisms include a decrease in mitochondrial oxidative stress.

Key words:
Free radicals
Mitochondria
Ageing
Longevity
DNA
El Texto completo está disponible en PDF
Bibliografía
[1.]
D. Harman.
The free radical theory of aging.
Antioxid Redox Signal, 5 (2003), pp. 557-561
[2.]
B.N. Ames, J. Liu.
Delaying the mitochondrial decay of aging with acetylcarnitine.
Ann N Y Acad Sci, 1033 (2004), pp. 108-116
[3.]
I. Rebrin, R.S. Sohal.
Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities.
Exper Gerontol, 39 (2004), pp. 1513-1519
[4.]
J.L. Barger, R.L. Walford, R. Weindruch.
The retardation of aging by caloric restriction: its significance in the transgenic era.
Exper Gerontol, 38 (2003), pp. 1343-1351
[5.]
G. Barja.
Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?.
Biological Rev, 79 (2004), pp. 235-251
[6.]
G. Barja de Quiroga, M. López-Torres, R. Pérez-Campo.
Free radicals and aging, pp. 109-123
[7.]
G. Benzi, A. Moretti.
Age and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system.
Free Rad Biol Med, 12 (1995), pp. 77-101
[8.]
J.M. Tolmasoff, T. Ono, R.G. Cutler.
Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species.
PNAS USA, 77 (1980), pp. 2777-2781
[9.]
R.G. Cutler.
Aging and oxygen radicals.
Physiology of oxygen radicals, pp. 251-285
[10.]
R. Pérez-Campo, M. López-Torres, S. Cadenas, C. Rojas, G. Barja.
The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach.
J Comp Physiol B, 168 (1998), pp. 149-158
[11.]
R.S. Sohal, B.H. Sohal, U.T. Brunk.
Relationship between antioxidant defenses and longevity.
Mech Ageing Dev, 53 (1990), pp. 217-227
[12.]
J. Epstein, D. Gershon.
Studies on ageing in nematodes IV. The effect of antioxidants on cellular damage and life span.
Mech Ageing Dev, 1 (1972), pp. 257-264
[13.]
N.W. Milgram, R.J. Racine, P. Nellis, A. Mendonca, G.O. Ivy.
Maintenance on l-deprenyl prolongs life in aged male rats.
Life Sciences, 47 (1990), pp. 415-420
[14.]
M.L. Heidrick, L.C. Hendricks, D.E. Cook.
Effect of dietary 2-mercaptoethanol on the life span, immune system, tumor incidence and lipid peroxidation damage in spleen lymphocytes of aging BC3F1 mice.
Mech Ageing Dev, 27 (1984), pp. 341-358
[15.]
W.C. Orr, R.S. Sohal.
Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster.
Science, 263 (1994), pp. 1128-1130
[16.]
R.R. Kohn.
Effect of antioxidants on life-span of C57BL mice.
J Gerontol, 26 (1971), pp. 378-380
[17.]
N.K. Clapp, L.C. Satterfield, N.D. Bowles.
Effects of the antioxidant butylated hydroxytoluene (BHT) on mortality in BALB/c mice.
J Gerontol, 34 (1979), pp. 497-501
[18.]
H.E. Enesco, C. Verdone-Smith.
α-Tocopherol increases lifespan in the rotifer Philodina.
Exp Gerontol, 15 (1980), pp. 335-338
[19.]
M. Ledvina, M. Hodánová.
The effect of simultaneous administration of tocopherol and sunflower oil on the life-span of female mice.
Exp Gerontol, 15 (1980), pp. 67-71
[20.]
E.A. Porta, N.S. Joun, R.T. Nitta.
Effects of the type of dietary fat at two levels of vitamin E in Wistar male rats during development and aging. I. Life span, serum biochemical parameters and pathological changes.
Mech Ageing Dev, 13 (1980), pp. 1-39
[21.]
V. Bozovic, H.E. Enesco.
Effect of antioxidants on rotifer life span and activity.
Age, 9 (1986), pp. 41-45
[22.]
S.B. Harris, R. Weindruch, G.S. Smith, M.R. Mickey, R.L. Walford.
Dietary restriction alone and in combination with oral ethoxyquine/2-mercaptoethylamine in mice.
J Gerontol, 45 (1990), pp. B141-B147
[23.]
M. López-Torres, R. Pérez-Campo, A. Fernández, C. Barba, G. Barja de Quiroga.
Brain glutathione reductase induction increases early survival and decreases lipofuscin accumulation in aging frogs.
J Neurosci Res, 34 (1993), pp. 233-242
[24.]
M. López-Torres, R. Pérez-Campo, C. Rojas, S. Cadenas, G. Barja de Quiroga.
Simultaneous induction of superoxide dismutase, glutathione reductase, GSH and ascorbate in liver and kidney correlates with survival throughout the life span.
Free Rad Biol Med, 15 (1993), pp. 133-142
[25.]
W.C. Orr, R.S. Sohal.
The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster.
Arch Biochem Biophys, 297 (1992), pp. 35-41
[26.]
N.O. Seto, S. Hayashi, G.M. Tener.
Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span.
PNAS USA, 87 (1990), pp. 4270-4274
[27.]
B.E. Staveley, J.P. Phillips, A.J. Hilliker.
Phenotypic consequences of copperzinc superoxide dismutase overexpression in Drosophila melanogaster.
Genome, 33 (1990), pp. 867-872
[28.]
T.T. Huang, E.J. Carlson, A.M. Gillespie, Y. Shi, C.J. Epstein.
Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice.
J Gerontol, 55A (2000), pp. B5-9
[29.]
D. Jaarsma, E.D. Haasdijk, J.A.C. Grashorn, R. Hawkins, W. Van Duijn, H.W. Verspaget, et al.
Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1.
Neurobiol Disease, 7 (2000), pp. 623-643
[30.]
R.J. Mockett, R.S. Sohal, W.C. Orr.
Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not in normoxia.
FASEB J, 13 (1999), pp. 1733-1742
[31.]
J.R. Wispe, B.B. Warner, J.C. Clarck, C.R. Dey, J. Neuman, S.W. Glasser, et al.
Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury.
J Biol Chem, 267 (1992), pp. 23937-23941
[32.]
T.T. Huang, E.J. Carlson, A.M. Gillespie, Y. Shi, C.J. Epstein.
Ubiquitous overexpression of Cu,Zn superoxide dismutase does not extend life in mice.
J Gerontol, 55A (2000), pp. B5-E9
[33.]
Y.S. Ho, M. Gargano, J. Cao, R.T. Bronson, I. Heimler, R.J. Hutz.
Reduced fertility in female mice lacking copper-zinc superoxide dismutase.
J Biol Chem, 273 (1998), pp. 7765-7769
[34.]
J.M. Shefner, A.G. Reaume, D.G. Flood, R.W. Scott, N.W. Kowall, R.J. Ferrante, et al.
Mice lacking cytosolic superoxide dismutase display a distinctive motor axonopathy.
Neurology, 53 (1999), pp. 1239-1246
[35.]
L.M. Carlsson, J. Jonsson, T. Edlund, S.L. Marklund.
Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia.
PNAS USA, 92 (1995), pp. 6264-6268
[36.]
V.N. Reddy, F.J. Giblin, L.R. Lin, L. Dang, N.J. Unakar, D.C. Musch, et al.
Glutathione peroxidase-1 deficiency leads to increased nuclear light scattering, membrane damage, and cataract formation in gene-knockout mice.
Invest Ophthalmol Vis Sci, 42 (2001), pp. 3247-3255
[37.]
M.F. Tsan, J.E. White, B. Caska, C.J. Epstein, C.Y. Lee.
Susceptibility of heterozygous MnSOD gene-knockout mice to oxygen toxicity.
Am J Respir Cell Mol Biol, 19 (1998), pp. 114-120
[38.]
Y.S. Ho, M. Gargano, J. Cao.
Mice lacking copper/zinc superoxide dismutase show no increased sensitivity to hyperoxia.
Am J Respir Crit Care Med, 155 (1997), pp. A17
[39.]
K.K. Ohlemiller, S.L. McFadden, D.L. Ding, D.G. Flood, A.G. Reaume, E.K. Hoffman, et al.
Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss.
Audiol Neurootol, 4 (1999), pp. 237-246
[40.]
J.B. De Haan, C. Bladier, P. Griffiths, M. Kelner, R.D. O'Shea, N.S. Cheung, et al.
Mice with homologous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stressinducing agents paraquat and hydrogen peroxide.
J Biol Chem, 273 (1998), pp. 22528-22536
[41.]
S. Melov, P. Coskun, M. Patel, R. Tuinstra, B. Cottrell, A.S. Jun, et al.
Mitochondrial disease in superoxide dismutase 2 mutant mice.
PNAS USA, 96 (1999), pp. 846-851
[42.]
K. Kirby, J. Hu, A.J. Hilliker, J.P. Phillips.
RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress.
PNAS USA, 99 (2002), pp. 16162-16167
[43.]
H.H. Ku, U.T. Brunk, R.S. Sohal.
Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species.
Free Rad Biol Med, 15 (1993), pp. 621-627
[44.]
G. Barja.
Free radicals and aging.
Trends Neurosci, 27 (2004), pp. 595-600
[45.]
G. Barja, A. Herrero.
Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.
FASEB J, 14 (2000), pp. 312-318
[46.]
A. Herrero, G. Barja.
8-oxodeoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging.
Aging Clin Exper Res, 11 (1999), pp. 294-300
[47.]
Ch. Richter, J.W. Park, B.N. Ames.
Normal oxidative damage to mitochondrial and nuclear DNA is extensive.
PNAS USA, 85 (1988), pp. 6465-6467
[48.]
R.S. Sohal, S. Agarwal, B.H. Sohal.
Oxidative stress and aging in the mongolian gerbil (Meriones unguiculatus).
Mech Ageing Dev, 81 (1995), pp. 15-25
[49.]
J.G. Asunción, A. Millán, R. Pla, L. Bruseghini, A. Esteras, F.V. Pallardó, et al.
Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA.
FASEB J, 10 (1996), pp. 333-338
[50.]
A. Herrero, G. Barja.
Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life span of the rat.
J Amer Aging Assoc, 24 (2001), pp. 45-50
[51.]
A.M.S. Lezza, P. Mecocci, A. Cormio, M.F. Beal, A. Cherubini, P. Cantatore, et al.
Mitochondrial DNA 4977 bp deletion and OH8dG levels correlated in the brain of aged subjects but not Alzheimer's disease patients.
FASEB J, 13 (1999), pp. 1083-1088
[52.]
G. Barja.
The flux of free radical attack through mitochondrial DNA is related to aging rate.
Aging Clin Exper Res, 12 (2000), pp. 342-355
[53.]
S.R. Kim, K. Matsui, M. Yamada, T. Kohno, H. Kasai, J. Yokota, et al.
Suppression of chemically induced and spontaneously occurring oxidative mutagenesis by three alleles of human OGG1 gene encoding 8-hydroxyguanine DNA glycosylase.
Mutat Res, 554 (2004), pp. 365-374
[54.]
P. Couture, A.J. Hulbert.
Membrane fatty acid composition of tissues is related to body mass of mammals.
J Membr Biol, 148 (1995), pp. 27-39
[55.]
R. Pamplona, J. Prat, S. Cadenas, C. Rojas, R. Pérez-Campo, M. López-Torres, et al.
Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from longevous species: the pigeon and human case.
Mech Ageing Dev, 86 (1996), pp. 53-66
[56.]
R. Pamplona, M. Portero-Otín, J.R. Requena, S.R. Thorpe, A. Herrero, G. Barja.
A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat.
Mech Ageing Dev, 106 (1999), pp. 283-296
[57.]
R. Pamplona, M. Portero-Otín, D. Riba, F. Ledo, R. Gredilla, A. Herrero, et al.
Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse.
Aging Clin Exper Res, 11 (1999), pp. 44-49
[58.]
R. Pamplona, M. Portero-Otín, C. Ruiz, J. Prat, M.J. Bellmunt, G. Barja.
Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals.
J Lipid Res, 39 (1998), pp. 1989-1994
[59.]
R. Pamplona, G. Barja, M. Portero-Otín.
Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. A homeoviscous-longevity adaptation?.
Ann N Y Acad Sci, 959 (2002), pp. 475-490
[60.]
H.W. Cook.
Fatty acid desaturation and chain elongation in eukaryotes.
Biochemistry of lipids, lipoproteins and biomembranes, pp. 129-152
[61.]
R. Pamplona, M. Portero-Otín, A. Sanz, J. Requena, G. Barja.
Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain.
Exper Gerontol, 39 (2004), pp. 725-733
[62.]
C.K. Lee, T.D. Pugh, R.G. Klopp, J. Edwards, D.B. Allison, R. Weindruch, et al.
The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice.
Free Radic Biol Med, 36 (2004), pp. 1043-1057
[63.]
R. Gredilla, A. Sanz, M. López-Torres, G. Barja.
Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart.
FASEB J, 15 (2001), pp. 1589-1591
[64.]
R. Gredilla, G. Barja, M. López-Torres.
Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria, and location of the free radical source.
J Bioenerg Biomembr, 33 (2001), pp. 279-287
[65.]
M. López-Torres, R. Gredilla, A. Sanz, G. Barja.
Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.
Free Rad Biol Med, 32 (2002), pp. 882-889
[66.]
B. Drew, S. Phaneuf, A. Dirks, C. Selman, R. Gredilla, A. Lezza, et al.
Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart.
Amer J Physiol, 284 (2003), pp. R474-R480
[67.]
R. Gredilla, S. Phaneuf, C. Selman, S. Kendaiah, C. Leeuwenburgh, G. Barja.
Short-term caloric restriction and sites of oxygen radical generation in kidney and skeletal muscle mitochondria.
Ann N Y Acad Sci, 1019 (2004), pp. 333-342
[68.]
J.J. Ramsey, K. Hagopian, T.M. Kenny, E.K. Koomson, L. Bevilacqua, R. Weindruch, et al.
Proton leak and hydrogen peroxide production in liver mitochondria from energy-restricted rats.
Am J Physiol, 286 (2004), pp. E31-E40
[69.]
L. Bevilacqua, J.J. Ramsey, K. Hagopian, R. Weindruch, M.E. Harper.
Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production.
Am J Physiol, 286 (2004), pp. E852-E861
[70.]
S. Judge, A. Judge, T. Grune, C. Leeuwenburgh.
Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content.
Am J Physiol, 286 (2004), pp. R254-R259
[71.]
A. Sanz, P. Caro, G. Barja.
Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver.
J Bioenerg Biomembr, 36 (2004), pp. 545-552
[72.]
R.S. Sohal, H.H. Ku, S. Agarwal, M.J. Forster, H. Lal.
Oxidative damage,mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction.
Mech Ageing Dev, 74 (1994), pp. 121-133
[73.]
R. Weindruch, T. Kayo, C.L. Lee, T.A. Prolla.
Microfile profiling of gene expression in aging and its alteration by caloric restriction in mice.
J Nutr, 131 (2001), pp. S918-S923
[74.]
A.J. Fornace Jr, B. Zmudka, M.C. Hollander, S.H. Wilson.
Induction of β-polymerase mRNA by DNA-damaging agents in Chinese hamster ovarycells.
Mol Cell Biol, 9 (1989), pp. 851-853
[75.]
A. Payne, G. Chu.
Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage.
Mut Res, 310 (1994), pp. 89-102
[76.]
J.H. Petrini.
The mammalian Mre11-Rad50-nbs1 protein complex: integration of functions in the cellular damage response.
Am J Hum Genet, 64 (1999), pp. 1264-1269
[77.]
R. Pamplona, M. Portero-Otín, M.J. Bellmunt, R. Gredilla, G. Barja.
Aging increases Nepsilon-(carboxymethyl)lysine and caloric restriction decreases Nepsilon-(carboxyethyl)lysine and Nepsilon-(malondialdehyde)lysine in rat heart mitochondrial proteins.
Free Rad Res, 36 (2002), pp. 47-54
[78.]
R.S. Sohal, I. Svensson, U.T. Brunk.
Hydrogen peroxide production by liver mitochondria in different species.
Mech Ageing Dev, 53 (1990), pp. 209-215
[79.]
R.S. Sohal, H.H. Ku, S. Agarwal.
Biochemical correlates of longevity in two closely related rodent species.
Biochem Biophys Res Comms, 196 (1993), pp. 7-11
[80.]
A. Herrero, G. Barja.
H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved.
Mech Ageing Dev, 103 (1998), pp. 133-146
[81.]
H.H. Ku, R.S. Sohal.
Comparison of mitochondrial pro-oxidant generation and antioxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential.
Mech Ageing Dev, 72 (1993), pp. 67-76
[82.]
G. Barja, S. Cadenas, C. Rojas, R. Pérez-Campo, M. López-Torres.
Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds.
Free Rad Res, 21 (1994), pp. 317-328
[83.]
A. Herrero, G. Barja.
Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon.
Mech Ageing Dev, 98 (1997), pp. 95-111
[84.]
G. Barja, A. Herrero.
Localization at complex I and mechanism of the higher free radical production of brain non-synaptic mitochondria in the short-lived rat than in the longevous pigeon.
J Bioenerg Biomembr, 30 (1998), pp. 235-243
Copyright © 2005. Sociedad Española de Geriatría y Gerontología
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos