Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Nuevos materiales en artroplastia total de cadera
Información de la revista
Vol. 47. Núm. 6.
Páginas 434-442 (Enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 47. Núm. 6.
Páginas 434-442 (Enero 2003)
Acceso a texto completo
Nuevos materiales en artroplastia total de cadera
New materials for total hip arthroplasty
Visitas
7337
M. Fernández-Fairéna,
Autor para correspondencia
axisbiomec@bsab.com

Correspondencia: Río de Oro, 37. 08034 Barcelona.
, F.J. Gil-Murb
a Fundación Policlínica. Granollers. Barcelona
b Departamento de Materiales. Escuela Técnica Superior de Ingenieros Industriales. Universidad Politécnica de Barcelona
Este artículo ha recibido
Información del artículo

La búsqueda de la longevidad de los implantes protésicos articulares es uno de los imperativos que más preocupan hoy día a los investigadores y a los cirujanos ortopédicos que trabajan en este campo. Efectivamente, cada día se afrontan pacientes de menor edad deseosos de seguir una actividad vital normal, incluso de participar regularmente en deportes con impactos o en tareas pesadas y de carga. En el caso de las artroplastias de cadera se ha conseguido un buen funcionamiento de las mismas, casi asegurado en los primeros 10 años tras su implantación; sin embargo, a partir de ese plazo la supervivencia decrece. El fracaso del implante suele sobrevenir por desgaste de sus componentes articulares o por pérdida de fijación al hueso huésped, estando ambas causas íntimamente relacionadas. En este artículo se revisan los materiales utilizados en superficies articulares y después se analizan los que entran a formar parte de la composición estructural del sustrato y de las superficies de fijación de la prótesis.

Palabras clave:
nuevos materiales
artroplastia total de cadera
prótesis

The search for durable articular prosthetic implant materials is a concern to researchers and orthopedic surgeons working in this field. Patients are progressively younger and wish to continue their normal activities, including regular high-impact sports activities, as well as heavy tasks involving loading. In the case of hip replacements, their functionality is practically guaranteed in the first 10 years of service, but then their survival drops off. Implant failure usually occurs as a result of wear of the articular components or loss of fixation to the host bone, which are two intimately related causes. In the present review we examine the materials used on articular surfaces and then analyze those that form part of the structural composition of the substrate and the prosthesis-fixation surfaces.

Key words:
new materials
total hip arthroplasty
prosthesis
El Texto completo está disponible en PDF
Bibliografía
[1.]
H. McKellop.
Assessment of wear of materials for artificial joints.
The adult hip, pp. 231-246
[2.]
D.H. Sochart.
Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty.
Clin Orthop, 363 (1999), pp. 135-150
[3.]
G. Maccauro, C. Piconi, L. Proietti, M. Timpanaro, V. De Santis, G. Magliocchetti, et al.
Analysis of the catastrophic failure of a THR: The role of the acetabular component.
Hip Int, 11 (2001), pp. 201-208
[4.]
B.M. Wroblewski, P.D. Siney, P.A. Fleming.
Low-friction arthroplasty of the hip using alumina ceramic and cross-linked polyethylene: A ten year follow-up report.
J Bone Joint Surg Br, 81B (1999), pp. 54-55
[5.]
H. Oonishi, M. Saito, Y. Kadoya.
Wear of high-dose gamma irradiated polyethylene in total joint replacement. Long term radiological evaluation.
Trans 44th Annual Meeting of the Orthop Res Soc, (1998), pp. 97
[6.]
C.J. Grobbelaar, T.A. du Plessis, F. Marais.
The radiation improvement of polyethylene prostheses: A preliminary study.
J Bone Joint Surg Br, 60B (1978), pp. 370-374
[7.]
A. Wang, V.K. Polineni, A. Essner, D.C. Sun, C. Stark, J.H. Dumbleton.
Effect of radiation dosage on the wear of stabilized UHMWPE evaluated by hip and knee joint simulators.
Trans 23rd Annual Meeting of the Soc Biomat, (1997), pp. 394
[8.]
H. McKellop, F. Shen, B. Lu, P. Campbell, R. Salovey.
Development of an extremely wear-resistant ultrahigh molecular weight polyethylene for total hip replacement.
J Orthop Res, 17 (1999), pp. 157-167
[9.]
A.M. Gillis, J.J. Schmieg, S. Bhattacharyya, S. Li.
An independent evaluation of the conditions.
Trans 25th Annual Meeting of the Soc Biomat, (1999), pp. 216
[10.]
T.P. Schmalzried, H.A. McKellop.
Rationale for crosslinked polyethylene in hip and knee replacement surgery.
Current Opinion in Orthop, 11 (2000), pp. 397-402
[11.]
H.A. McKellop.
Bearing surfaces in total hip replacements: State of the art and future developments.
Instruc Course Lect, 50 (2001), pp. 165-179
[12.]
T.W. Bauer.
Total hip arthroplasty wear reduction technology: Cross-linked polyethylene.
Orthopedic Special Edition, 6 (2000), pp. 27-31
[13.]
M.T. Manley, W.N. Capello, J.A. D’Antonio, A.A. Edidin.
Higly crosslinked polyethylene acetabular liners for reduction in wear in total hip replacement.
67th Annual Meeting Proceedings of the American Academy of Orthopaedic Surgeons,, (2000), pp. 275
[14.]
A.A. Edidin, S.M. Kurtz.
The evolution of paradigms for wera in total joint arthroplasty: The role of design, material, and mechanics, (2000), pp. 1-14
[15.]
O.K. Muratoglou, C.R. Bragdon, D.O. O’Connor, H. Skehan, J. Delaney, M. Jasty, et al.
The effect of temeprature on radiation cross-linking of UHMWPE for use in total hip arthroplasties.
Trans 46th Annual Meeting of the Orthop Res Soc, (2000), pp. 547
[16.]
H. McKellop, F. Shen, W. DiMaio, G. Lancaster.
Wear of gamma-crosslinked polyethylene acetabular cups against roughened femoral balls.
Clin Orthop, 369 (1999), pp. 73-82
[17.]
R.A. Latour, J. Black.
Development of FRP composite structural biomaterials: Ultimate strength of the fiber/matrix interfacial bond in vivo simulated environments.
J Biomed Mat Res, 26 (1992), pp. 593-606
[18.]
R. Ainsworth, G. Farling, D. Bardos.
An improved bearing material for joint replacement prostheses: carbon fiber reinforced UHMW polyethylene.
Trans 23rd Annual Meeting of the Orthopaedic Research Society, (1977), pp. 120
[19.]
G.M. Farling, K. Greer.
An improved bearing material for joint replacement prostheses: carbon fibre-reinforced ultra high molecular weight polyethylene.
Mechanical properties of biomaterials, pp. 53-64
[20.]
W. Huettner, G. Keuscher, M. Nietert.
Carbon fibre-reinforced polysulfone-thermoplastic composites.
Biomaterials and Biomechanics 1983, pp. 167-172
[21.]
H.B. Skinner.
Composite technology for total hip arthroplasty.
Clin Orthop, 235 (1988), pp. 224-236
[22.]
J.D. Henderson, R.H. Mullarky, D.E. Ryan.
Tissue biocompatibility of kevlar aramid fibers and polymethylmethacrylate composites in rabbits.
J Biomed Mat Res, 21 (1987), pp. 59-64
[23.]
B. Boenisch.
Five year functionality study of carbon fibre reinforced acetabular implants in dogs.
Advances in Biomaterials, Vol 9, pp. 391-396
[24.]
R. Moore, P. Beredjiklian, R. Rhoad, S. Theiss, J. Cuckler, P. Ducheyne, et al.
A comparison of the inflammatory potential of particulates derived from two composite materials.
J Biomed Mat Res, 34 (1997), pp. 137-147
[25.]
M. Akay, N. Aslan.
Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis.
J Biomed Mat Res, 31 (1996), pp. 167-182
[26.]
T.M. Wright, C.M. Rimmac, P.M. Faris, M. Bansal.
Analysis of surface damage ocurring in carbon fiber-reinforced and plain polyethylene tibial components from posterior stabilized type total knee replacement.
J Bone Joint Surg Am, 70A (1988), pp. 1312-1327
[27.]
F.N. Cogswell, M. Hopprich.
Environmental resistance of carbon fiber-reinforced poly ether ketone.
Composites, 14 (1983), pp. 251-253
[28.]
E.J. Stober, J.C. Seferis, J.D. Keenan.
Characterization and exposure of poly ether ether ketone (PEEK) to fluid environments.
Polymer, 25 (1984), pp. 1845-1852
[29.]
C. Ma, S. Yur.
Environmental effects on the water absorption and mechanical properties of carbon fiber reinforced PPS and PEEK composites.
Polym Eng Sci, 31 (1991), pp. 34-39
[30.]
D.F. Williams, A. McNamara, R.M. Turner.
Potential of poly ether ether ketone (PEEK) carbon-fiber-reinforced PEEK in medical applications.
J Mater Sci Let, 6 (1987), pp. 188-190
[31.]
L.M. Wenz, K. Merritt, A. Moet, A.D. Steffe.
In vitro biocompatibility of poly ether ether ketone and polysulfone composites.
J Biomed Mater Res, 24 (1990), pp. 207-215
[32.]
M. Fernández Fairen, V.K. Polineni, A. Wang.
Ensayo de nuevos materiales en el acetábulo de prótesis totales de cadera.
Ciencias Básicas aplicadas a la Cirugía Ortopédica. Curso Básico Fundación SECOT, pp. 321-329
[33.]
T.M. Wright, D.J. Astion, M. Bansal, C.M. Rimnac, T. Green, J.N. Insall, et al.
Failure of carbon fiber-reinforced polyethylene total knee-replacement components.
J Bone Joint Surg Am, 70A (1988), pp. 926-932
[34.]
P. Boutin.
Arthroplastie totale de hanche par prothèse en alumine frittée.
Rev Chir Orthop, 58 (1972), pp. 229-246
[35.]
H. Mittelmeier, J. Heisel.
Sixteen-years’ experience with ceramic hip prostheses.
Clin Orthop, 282 (1992), pp. 64-72
[36.]
S. Lerouge, L. Yahia, L. Sedel.
Alumina ceramic in total joint replacement.
Hip Surgery: Materials and Developments, pp. 31-40
[37.]
I.C. Clarke.
Role of ceramics implants: Design and clinical success with total hip prosthetic ceramic-to-ceramic bearings.
Clin Orthop, 282 (1992), pp. 19-30
[38.]
E. García-Cimbrelo, J.M. Martínez-Sayanes, A. Minuesa, L. Munuera.
Mittelmeier ceramic-ceramic prosthesis after 10 years.
J Arthroplasty, 11 (1996), pp. 773-781
[39.]
L. Sedel.
Evolution of alumina-alumina implants. A review.
Clin Orthop, 379 (2000), pp. 48-54
[40.]
P. Bizot, R. Nizard, M. Hamadouche, D. Hannouche, L. Sedel.
Prevention of wear and osteolysis.
Clin Ortop, 393 (2001), pp. 85-93
[41.]
I.A. Walter.
On the material and the tribology of alumina-alumina couplings for hip joint prostheses.
Clin Orthop, 282 (1992), pp. 31-46
[42.]
J. Witwoet, R. Nizard, L. Sedel.
Ceramic on ceramic bearing surfaces.
pp. 143-150
[43.]
H.B. Skinner.
Ceramic bearing surfaces.
Clin Orthop, 369 (1999), pp. 83-91
[44.]
L. Sedel.
Alumina on polyethylene bearings.
pp. 135-141
[45.]
B. Cales.
Zirconia as a sliding material. Histologic, laboratory, and clinical data.
Clin Orthop, 379 (2000), pp. 94-112
[46.]
Villermaux F, Calès B. Zirconia heads in ceramic-ceramic THPs. Finite element analysis and hip joint simulator wear tests. 2nd Meeting on Alternate Bearing Surface; octubre 1999; San Francisco, EE.UU., p. 1-13
[47.]
S. Affatato, M. Testoni, G.L. Cacciari, A. Toni.
Mixed-oxides prosthetic ceramic ball heads: Part 2. Effects on the ZrO2 fraction on the wear of ceramic on ceramic joints.
Biomaterials, 20 (1999), pp. 1925-1929
[48.]
M. Schmidt, H. Weber, R. Schon.
Cobalt chromium molybdenum metal combination for modular hip prostheses.
Clin Orthop, 329 (1996), pp. 35-47
[49.]
F.W. Chan, J.D. Bobyn, J.B. Medley, J.J. Krygier, M. Tanzer.
Wear and lubrication of metal-on-metal hip implants.
Clin Orthop, 369 (1999), pp. 10-24
[50.]
J.M. Williams, L. Riester, R. Pandey, A.W. Eberhardt.
Properties of nitrogen implanted alloys and comparison materials.
Surf Coat Technol, 88 (1996), pp. 132-138
[51.]
P. Sioshansi.
Ion implantation improves wear resistance of titanium.
Orthopedics Today, 10 (1990), pp. 24-26
[52.]
S.S. Santavirta, R. Lappalainen, P. Pekko, A. Anttila, Y. Konttinen.
The counterface, surface, smoothness, tolerances, and coatings in total joint prostheses.
Clin Orthop, 369 (1999), pp. 92-102
[53.]
M.J. Pappas, G. Makris, F.F. Buechel.
Titanium nitride ceramic film against polyethylene. A 48 million cycle wear test.
Clin Orthop, 317 (1995), pp. 64-70
[54.]
J.K. Taylor, B.J. Pope.
The development of diamond as a bearing for total hip arthroplasty.
67th Annual Meeting of the AAOS, (2000),
[55.]
R.M. Pilliar, R. Blackwell, I. Macnab, H.U. Cameron.
Carbon fiber reinforced bone cement in orthopaedic surgery.
J Biomed Mater Res, 10 (1976), pp. 893-906
[56.]
W. Henning, B.A. Blencke, H. Brömer, K.K. Deutscher, A. Gross, W. Ege.
Investigations with bioactivated polymethylmethacrylates.
J Biomed Mater Res, 13 (1979), pp. 89-99
[57.]
J.A. Planell, M.M. Vila, F.J. Gil, F.C.M. Driessens.
Acrylic bone cements.
pp. 879-921
[58.]
T. Yamamuro, T. Nakamura, H. Iida, K. Kawanabe, Y. Matsuda, K. Ido, et al.
Preclinical and clinical application of bioactive bone cement.
pp. 83-87
[59.]
L.L. Hench, R.J. Splinter.
Bonding mechanisms at the interface of ceramic prosthetic materials.
J Biomed Mater Res, 2 (1971), pp. 117-141
[60.]
R.G.T. Geesink, N.H.M. Hoefnagels.
Hydroxyapatite coatings: clinical and retrieval analysis data.
pp. 253-265
[61.]
J.D.J. Eldridge, I.D. Learmonth.
Component bone interface in cementless hip arthroplasty.
pp. 71-80
[62.]
P. Ducheyne.
Bioactive calcium phosphate ceramics and glasses.
pp. 74-82
[63.]
W.N. Capello, J.A. D’Antonio, M.T. Manley, J.R. Feinberg.
Hydroxyapatite in total hip arthroplasty: Clinical results and critical issues.
Clin Orthop, 355 (1998), pp. 200-211
[64.]
C.L. Tisdel, V.M. Goldberg, J.A. Parr, J.S. Bensusan, L.S. Staikoff, S. Stevenson.
The influence of a hydroxyapatite and tricalcium-phosphate coating on bone ingrowth into titanium fibermetal implants.
J Bone Joint Surg Am, 76A (1994), pp. 159-171
[65.]
J.D. Bobyn, S.A. Hacking, S.P. Chan, K-K Toh, J.J. Krygier, M. Tanzer.
Characterization of a new porous tantalum biomaterial for reconstructive orthopaedics.
66th Annual Meeting AAOS, (1999),
[66.]
E.W. Morscher, W. Dick.
Cementless fixation of «isoelastic» hip endoprostheses manufactured from plastic materials.
Clin Orthop, 176 (1983), pp. 77-87
[67.]
S.L. Evans, P.J. Gregson.
Composite technology in load bearing orthopaedic implants.
Biomaterials, 19 (1998), pp. 1329-1342
[68.]
P. Christel, A. Meunier, S. Leclerq.
Development of a carboncarbon hip prosthesis.
J Biomed Mater Res, 21 (1987), pp. 191-218
[69.]
P.G.M. Maathuis, J.D. Visser.
High failure rate of soft-interface stem coating for fixation of femoral endoprostheses.
J Arthroplasty, 11 (1996), pp. 548-552
[70.]
S. Allcock, M.A. Ali.
Early failure of a carbon-fiber composite femoral component.
J Arthroplasty, 12 (1997), pp. 356-358
[71.]
A.H. Glassman, R.D. Crowninshield, R. Schenk, P. Herberts.
A low stiffness composite biologically fixed prosthesis.
Clin Orthop, 393 (2001), pp. 128-136
Copyright © 2003. Sociedad Española de Cirugia Ortopédica y Traumatología (SECOT)
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos