Buscar en
Revista Colombiana de Cardiología
Toda la web
Inicio Revista Colombiana de Cardiología Mecanismos de cardiotoxicidad: antineoplásicos, anti-inflamatorios no esteroide...
Información de la revista
Vol. 18. Núm. 2.
Páginas 100-110 (Marzo - Abril 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 18. Núm. 2.
Páginas 100-110 (Marzo - Abril 2011)
Open Access
Mecanismos de cardiotoxicidad: antineoplásicos, anti-inflamatorios no esteroideos, antipsicóticos, cocaetileno y simpaticomiméticos
Mechanisms of cardiotoxicity: antineoplastics, nonsteroidal anti-inflammatory drugs, antipsychotics, cocaethylene and sympathomimetics
Visitas
6782
Lukas Salazar1,
Autor para correspondencia
lukassal@hotmail.com

Correspondencia: Cra. 69 D No. 24 C-50 Bloque 2 Apto. 803. Bogotá, DC. Colombia. Tel (57-1) 8 01 72 71 - 301 750 70 09- 300 551 71 00.
, Ana Cristina Palacio1, Javier R. Rodríguez1
1 Fundación Santa Fe de Bogotá, Bogotá, Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La interacción constante del organismo humano con diferentes sustancias, que incluso en muchas ocasiones se consideran inofensivas, tiene un alto impacto sobre todos los sistemas, siendo el cardiovascular uno de los más afectados. Por lo tanto, es vital reconocer los mecanismos por los cuales estas sustancias ejercen su efecto tóxico sobre este sistema, bien sea afectando la estabilidad de membrana y la función contráctil o generando disfunción de organelos intracelulares y estrés oxidativo. Numerosos estudios han descubierto efectos lesivos de sustancias, como la clozapina y las catecolaminas, que han tenido amplio uso durante largos años. En la actualidad aún se realizan investigaciones que buscan esclarecer los mecanismos cardiotóxicos de medicamentos de formulación común, entre ellos antineoplásicos y anti-inflamatorios no esteroideos (AINE), así como de sustancias de uso habitual que causan adicción, tales como alcohol, cocaína y cocaetileno, su metabolito activo.

Palabras clave:
cardiotoxicidad
arritmogénesis
daño miocárdico
antineoplásicos
antiinflamatorios no esteroideos
cocaetileno
clozapina
catecolaminas

The constant interaction of the human body with different substances that are even in many cases considered harmless has a high impact on all systems, being the cardiovascular system one of the most affected. Therefore, it is vital to recognize the mechanisms by which these substances exert their toxic effect on this system, either affecting the membrane stability and the contractile function, or generating intracellular organelles dysfunction and oxidative stress. Numerous studies have found that drugs which have been widely used for many years such as clozapine and catecholamines, have harmful effects. Research is still being done seeking to clarify the cardiotoxic mechanisms of drugs commonly formulated, including anticancer and non steroidal anti-inflammatory drugs (NSAIDs), as well as commonly used substances that cause addiction, such as alcohol, cocaine and cocaethylene, its active metabolite.

Palabras clave:
cardiotoxicity
arrhythmogenesis
myocardial injury
antineoplastics
nonsteroidal antiinflammatory drugs
cocaethylene
clozapine
catecholamines
El Texto completo está disponible en PDF
Bibliografía
[1.]
R.W. Neumar, C.W. Otto, M.S. Link, et al.
Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
Circulation, 122 (2010), pp. S729-S767
[2.]
K.S. Ramos, R.B. Melchert, E. Chacón, D. Acosta.
Toxic responses of the heart and vascular systems.
Casarett and Doull's Toxicology: The Basic Science of Poisons, 6th, pp. 597-631
[3.]
Y.J. Kang.
Molecular and cellular mechanisms of cardiotoxicity.
Environ Health Perspect, 109 (2001), pp. 27-34
[4.]
L.F. Bohórquez, M. Pineda, F. Marín, et al.
Bases Fundamentales de la Cardiología.
Texto de Cardiología. Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, pp. 3-81
[5.]
D.A. Eisner, T. Kashimura, S.C. O’Neil, Venetucci, A.W. Trafford.
What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis?.
J Mol Cell Cardiol, 46 (2009), pp. 474-481
[6.]
R.A. Hessler.
Cardiovascular principles.
Goldfrank's Toxicologic Emergencies, 8th, pp. 364-377
[7.]
M.M. Patel, N. Benowitz.
Cardiac conduction and rate disturbances.
Critical care toxicology: diagnosis and management of the critically poisoned patient, pp. 241-257
[8.]
C. Delk, C.P. Holstege, W.J. Brady.
Electrocardiographic abnormalities associated with poisoning.
Am J Emerg Med, 25 (2007), pp. 672-687
[9.]
E.M. Vaughan Williams.
Significance of classifying antiarrhythmic actions since the cardiac arrhythmia suppression trial.
J Clin Pharmacol, 31 (1991), pp. 123-135
[10.]
G.S. Behonick, M.J. Novak, E.W. Nealley, S.I. Baskin.
Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes).
J Appl Toxicol, 21 (2001), pp. S15-S22
[11.]
K.J. Mukamal, K.M. Conigrave, M.A. Mittleman, et al.
Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men.
N Engl J Med, 348 (2003), pp. 109-118
[12.]
K.J. Mukamal, J.S. Tolstrup, J. Friberg, G. Jensen, M. Grønbæk.
Alcohol consumption and risk of atrial fibrillation in men and women: the Copenhagen City Heart Study.
Circulation, 112 (2005), pp. 1736-1742
[13.]
J. Liu, M. Yano, A. Shimamoto, T. Noma, M. Matsuzaki, T. Fujimiya.
Chronic effects of ethanol on pharmacokinetics and left ventricular systolic function in rats.
Alcohol Clin Exp Res, 31 (2007), pp. 493-499
[14.]
R.H. Kennedy, S.J. Liu.
Sex differences in L-type calcium current after chronic ethanol consumption in rats.
Toxicol Appl Pharmacol, 189 (2003), pp. 196-203
[15.]
R.A. Kloner, S. Hale, K. Alker, S. Rezkalla.
The effects of acute and chronic cocaine use on the heart.
Circulation, 85 (1992), pp. 407-419
[16.]
L. Afonso, T. Mohammad, D. Thatai.
Crack whips the heart: a review of the cardiovascular toxicity of cocaine.
Am J Cardiol, 100 (2007), pp. 1040-1043
[17.]
D.S. Harris, E.T. Everhart, J. Mendelson, R.T. Jones.
The pharmacology of cocaethylene in humans following cocaine and ethanol administration.
Drug Alcohol Depend, 72 (2003), pp. 169-182
[18.]
E.J. Pennings, A.P. Leccese, F.A. de Wolff.
Effects of concurrent use of alcohol and cocaine.
Addiction, 97 (2002), pp. 773-783
[19.]
L.D. Wilson, J. Jeromin, L. Garvey, A. Dorbant.
Cocaine, ethanol, and cocaethylene cardiotoxity in an animal model of cocaine and ethanol abuse.
Acad Emerg Med, 8 (2001), pp. 211-222
[20.]
O.E. Osadchii.
Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects.
Heart Fail Rev, 12 (2007), pp. 66-86
[21.]
I. Pernicova, S. Garg, C.V. Bourantas, F. Alamgir, A. Hoye.
Tako-Tsubo cardiomyopathy: a review of the literature.
Angiology, 61 (2009), pp. 166-173
[22.]
V. Vidi, V. Rajesh, P.P. Singh, et al.
Clinical characteristics of Tako-Tsubo cardiomyopathy.
Am J Cardiol, 104 (2009), pp. 578-582
[23.]
D.S. Feldman, T.S. Elton, B. Sun, M.M. Martin, M.T. Ziolo.
Mechanisms of disease: detrimental adrenergic signaling in acute decompensated heart failure.
Nat Clin Pract Cardiovasc Med, 5 (2008), pp. 208-218
[24.]
D.B. Merrill, G.W. William, D.C. Goff.
Adverse cardiac effects associated with clozapine.
J Clin Psychopharmacol, 25 (2005), pp. 32-41
[25.]
P.M. Wehmeier, P. Heiser, H. Remschmidt.
Myocarditis, pericarditis and cardiomyopathy in patients treated with clozapine.
J Clin Pharm Ther, 30 (2005), pp. 91-96
[26.]
J.F. Wang, J.Y. Min, T.G. Hampton, et al.
Clozapine-induced myocarditis: role of catecholamines in a murine model.
Eur J Pharmacol, 592 (2008), pp. 123-127
[27.]
E.P. Harrigan, J.J. Miceli, R. Anziano, et al.
A randomized evaluation of the effects of six antipsychotic agents on QTc, in the absence and presence of metabolic inhibition.
J Clin Psychopharmacol, 24 (2004), pp. 62-69
[28.]
T. Šimùnek, M. Štìrba, O. Popelová, M. Adamcová, R. Hrdina, V. Geršl.
Anthracyclineinduced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron.
Pharmacol Rep, 61 (2009), pp. 154-171
[29.]
K.J. Schimmel, D.J. Richel, R.B. van den Brink, H.J. Guchelaar.
Cardiotoxicity of cytotoxic drugs.
Cancer Treat Rev, 30 (2004), pp. 181-191
[30.]
E.T. Yeh, C.L. Bickford.
Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management.
J Am Coll Cardiol, 53 (2009), pp. 2231-2247
[31.]
J.D. Floyd, D.T. Nguyen, R.L. Lobins, Q. Bashir, D.C. Doll, M.C. Perry.
Cardiotoxicity of cancer therapy.
J Clin Oncol, 23 (2005), pp. 7685-7696
[32.]
J.M. Brophy.
Cardiovascular effects of cyclooxygenase-2 inhibitors.
Curr Opin Gastroenterol, 23 (2007), pp. 617-624
[33.]
D. Mukherjee.
Nonsteroidal anti-inflammatory drugs and the heart: what is the danger?.
Congest Heart Fail, 14 (2008), pp. 75-82
[34.]
C. Patrono, C. Baigent, J. Hirsh, G. Roth.
American College of Chest Physicians. Antiplatelet drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th. Edition).
Chest, 133 (2008), pp. 199S-233S
[35.]
M.E. Farkouh, B.P. Greenberg.
An evidence-based review of the cardiovascular risks of nonsteroidal anti-inflammatory drugs.
Am J Cardiol, 103 (2009), pp. 1227-1237
Copyright © 2011. Sociedad Colombiana de Cardiología y Cirugía Cardiovascular
Opciones de artículo
Herramientas
Quizás le interese:
10.1016/j.rccar.2019.03.001
No mostrar más