Buscar en
Revista Colombiana de Cancerología
Toda la web
Inicio Revista Colombiana de Cancerología Detección y tipificación del virus del papiloma humano (VPH) en mujeres con cÃ...
Información de la revista
Vol. 14. Núm. 2.
Páginas 78-87 (Enero 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 14. Núm. 2.
Páginas 78-87 (Enero 2010)
Acceso a texto completo
Detección y tipificación del virus del papiloma humano (VPH) en mujeres con cáncer de cuello uterino en Bogotá y Barranquilla. Procedimientos técnicos y de diagnóstico
Detection and Typing of the Human Papilloma Virus in Women with Cervical Cancer in Bogotá and Barranquilla. Technical and Diagnostic Procedures
Visitas
13809
Mónica Molano1,
Autor para correspondencia
mmolano@cancer.gov.co

Correspondencia: Mónica Molano Luque. Instituto Nacional de Cancerología. Av. 1a No. 9-85. Bogotá, Colombia. Tel.: +571-3341111 ext. 4205.
, Raúl Murillo2, Arlenne Cano2, Óscar Gamboa2, Jaime Ardila2, Juan Carlos Mejía3, Gilberto Martínez4
1 Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá. Colombia
2 Subdirección de Investigaciones, Instituto Nacional de Cancerología, Bogotá. Colombia
3 Grupo de Patología, Instituto Nacional de Cancerología, Bogotá. Colombia
4 Grupo de Ginecología, Clínica del Country, Bogotá. Colombia
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen
Objetivo

Analizar los procedimientos técnicos y de diagnóstico en la detección de genotipos del virus del papiloma humano (VPH) en muestras con cáncer de cuello uterino.

Métodos

Se tomaron tejidos incluidos en parafina de 268 casos de cáncer de cuello uterino, procedentes de Barranquilla y Bogotá. Se verificó el diagnóstico histológico mediante nuevos cortes y se analizó la calidad de las muestras mediante amplificación del gen de B-globina. En muestras B-globina negativas se realizaron nuevos cortes y nueva amplificación. La detección de VPH se realizó mediante iniciadores GP5+/GP6+biodirigidos hacia la región L1, y tipificación mediante EIA y RLB. En las muestras negativas para GP5+/GP6+ se desarrollaron PCR tipo específicas hacia la región E7 de 14 tipos de VPH de alto riesgo.

Resultados

De las 268 muestras iniciales, 20 (7,46%) tuvieron diagnóstico histológico inadecuado; 55/248 muestras fueron inicialmente B-globina negativas, pero 29 se recuperaron con una segunda PCR realizada, dejando 26 B-globina negativas (10,5%). Se detectó VPH en 210/222 muestras adecuadas mediante GP5+/GP6+ (94,6%), y en 7 muestras adicionales (3,15%), mediante iniciadores dirigidos hacia E7. No se detectó infección en 2,25% de los casos. Se encontraron 24 tipos de VPH; los más prevalentes fueron el VPH-16 (50,9%), VPH-18 (12,7%), VPH-45 (8,8%), VPH-31 (6,5%) y VPH-58 (6,0%). Hubo un 16,6% de infecciones múltiples.

Conclusión

El adecuado procesamiento y diagnóstico de las muestras y el uso de pruebas combinadas hacia las regiones L1 y E7 permiten una estimación óptima de la prevalencia de la infección en muestras incluidas en parafina.

Palabras clave:
VPH
tipificación del ADN
neoplasias del cuello uterino
técnicas moleculares diagnósticas
Colombia
Abstract
Objective

To analyze the role played by technical and diagnostic techniques in the detection of diverse genotypes of the human papilloma virus (HPV) in cervical cancer samples.

Methods

Paraffin fixed tissue samples were taken from 268 cases of cervical cancer in Bogotá and Barranquilla. Histological diagnosis was verified through new cuts and sample quality was analyzed through amplification of the β-globin gene. In the case of β-globin negatives, additional cuts and amplification were carried out. HPV detection was achieved using GP5+/GP6+bio indicators directed towards the L1 region, and typing through EIA and RLB. Among GP5+/GP6+ negatives, specific PCR type was developed towards the E7 region of 14 types of high risk HPV.

Results

Out of the initial 268 samples, 20 (7.46%) had inadequate histological diagnosis. Initially β-globin negative samples came to 55/248, but 29 recuperated with the realization of a second PCR, resulting in 26 β-globin negatives (10.5%). HPV was detected in 210/222 appropriate samples through GP5+/GP6+ (94.6%), and in 7 additional samples (3.15%) through the indicators directed towards E7. No infection was detected in 2.25% of cases. Twenty-four types of HPV were found, the most prevalent being HPV-16 (50.9%), HPV-18 (12.7%), HPV-45 (8.8%), HPV-31 (6.5%), and HPV-58 (6.0%). Multiple infection occurred in 16.6% of cases.

Conclusions

The adequate processing and diagnosis of samples and the use of combined tests towards the L1 and E7 regions allows for the optimum appraisal of infection prevalence among paraffin fixed samples.

Key words:
HPV
DNA typing
uterine cervical neoplasms
molecular diagnostic techniques
Colombia
El Texto completo está disponible en PDF
Referencias
[1.]
J.M. Walboomers, M.V. Jacobs, M.M. Manos, F.X. Bosch, J.A. Kummer, K.V. Shah, et al.
Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.
[2.]
F.X. Bosch, A. Lorincz, N. Munoz, C.J. Meijer, K.V. Shah.
The causal relation between human papillomavirus and cervical cancer.
J Clin Pathol, 55 (2002), pp. 244-265
[3.]
N. Muñoz, F.X. Bosch, S. de Sanjosé, R. Herrero, X. Castellsagué, K.V. Shah, et al.
Epidemiologic classification of human papillomavirus types associated with cervical cancer.
N Engl J Med, 348 (2003), pp. 518-527
[4.]
N. Muñoz, F.X. Bosch, X. Castellsagué, M. Díaz, S. de Sanjose, D. Hammouda, et al.
Against which human papillomavirus types shall we vaccinate and screen? The international perspective.
Int J Cancer, 111 (2004), pp. 278-285
[5.]
E.Q. Wu, G.N. Zhang, X.H. Yu, Y. Ren, Y. Fan, Y.G. Wu, et al.
Evaluation of high-risk human papillomaviruses type distribution in cervical cancer in Sichuan province of China.
BMC Cancer, 8 (2008), pp. 202
[6.]
S.J. Klug, A. Molijn, B. Schopp, B. Holz, A. Iftner, W. Quint, et al.
Comparison of the performance of different HPV genotyping methods for detecting genital HPV types.
J Med Virol, 80 (2008), pp. 1264-1274
[7.]
T. Gheit, S. Vaccarella, M. Schmitt, M. Pawlita, S. Franceschi, R. Sankaranarayanan, et al.
Prevalence of human papillomavirus types in cervical and oral cancers in central India.
[8.]
P.E. Gravitt, C.L. Peyton, T.Q. Alessi, C.M. Wheeler, F. Coutlee, A. Hildesheim, et al.
Improved amplification of genital human papillomaviruses.
J Clin Microbiol, 38 (2000), pp. 357-361
[9.]
B. Kleter, L.-J. van Doorn, J. ter Schegget, L. Schrauwen, K. van Krimpen, M. Burger, et al.
Novel short-fragment PCR assay for highly sensitive broad spectrum detection of anogenital human papillomaviruses.
Am J Pathol, 153 (1998), pp. 1731-1739
[10.]
B. Kleter, L.J. van Doorn, L. Schrauwen, A. Molijn, S. Sastrowijoto, J. ter Schegget, et al.
Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus.
J Clin Microbiol, 37 (1999), pp. 2508-2517
[11.]
M.M. Dabić, L. Hlupić, D. Babić, S. Jukić, S. Seiwerth.
Comparison of polymerase chain reaction and catalyzed signal amplification in situ hybridization methods for human papillomavirus detection in paraffin-embedded cervical preneoplastic and neoplastic lesions.
Arch Med Res, 35 (2004), pp. 511-516
[12.]
P.L. Cheah, L.M. Looi.
Detection of the human papillomavirus in cervical carcinoma: a comparison between non-isotopic in-situ hybridisation and polymerase chain reaction as methods for detection in formalin-fixed, paraffin- embedded tissues.
Malays J Pathol, 30 (2008), pp. 37-42
[13.]
V. Dalstein, S. Merlin, C. Bali, M. Saunier, R. Dachez, C. Ronsin.
Analytical evaluation of the PapilloCheck test, a new commercial DNA chip for detection and genotyping of human papillomavirus.
J Virol Methods, 156 (2009), pp. 77-83
[14.]
A.T. Hesselink, M.A. van Ham, D.A. Heideman, Z.M. Groothuismink, L. Rozendaal, J. Berkhof, et al.
Comparison of GP5+/6+-PCR and SPF10-line blot assays for detection of high-risk human papillomavirus in samples from women with normal cytology results who develop grade 3 cervical intraepithelial neoplasia.
J Clin Microbiol, 46 (2008), pp. 3215-3221
[15.]
P.E. Castle, C. Porras, W.G. Quint, A.C. Rodriguez, M. Schiffman, P.E. Gravitt, et al.
Comparison of two PCR-based human papillomavirus genotyping methods.
J Clin Microbiol, 46 (2008), pp. 3437-3445
[16.]
W. Qu, G. Jiang, Y. Cruz, C.J. Chang, G.Y. Ho, R.S. Klein, R.D. Burk.
PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems.
J Clin Microbiol, 35 (1997), pp. 1304-1310
[17.]
L.J. van Doorn, W. Quint, B. Kleter, A. Molijn, B. Colau, M.T. Martin, et al.
Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF(10) line probe assay.
J Clin Microbiol, 40 (2002), pp. 979-983
[18.]
S.R. Pagliusi, J. Dillner, M. Pawlita, W.G. Quint, C.M. Wheeler, M. Ferguson.
International standad reagents for harmonization of HPV srology and DNA assays-an update.
[19.]
G. Clifford, S. Franceschi, M. Diaz, N. Muñoz, L.L. Villa.
HPV type distribution in women with and without cevical neoplastic diseases.
[20.]
M. Piñeros, J. Ferlay, R. Murillo.
Cancer incidence estimates at the national and district levels in Colombia.
Salud Pública Méx, 48 (2006), pp. 455-465
[21.]
A.M. De Roda Husman, J.M. Walboomers, A.J. van der Brule, C.J. Meijer, P.J. Snijders.
The use general primers GP5 and GP6 elongated at their 3’ ends with adjacent highly conserved sequences improves human papilomavirus detection by PCR.
J Gen Virol, 76 (1995), pp. 1057-1062
[22.]
M.V. Jacobs, P.J. Snijders, A.J. van den Brule, T.J. Helmerhorst, C.J. Meijer, J.M. Walboomers.
A general primer GP5+/GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings.
J Clin Microbiol, 35 (1997), pp. 791-795
[23.]
A.J. van den Brule, R. Pol, N. Fransen-Daalmeijer, L.M. Schouls, C.J. Meijer, P.J. Snijders.
GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes.
J Clin Microbiol, 40 (2002), pp. 779-787
[24.]
K. Sigurdsson, F.J. Taddeo, K.R. Benediktsdottir, K. Olafsdottir, H. Sigvaldason, K. Oddsson, et al.
HPV genotypes in CIN 2-3 lesions and cervical cancer: a population-based study.
Int J Cancer, 121 (2007), pp. 2682-2687
[25.]
B. Illades-Aguiar, E.M. Cortés-Malagón, V. Antonio-Véjar, N. Zamudio-López, L.D. Alarcón-Romero, G. Fernández-Tilapa, et al.
Cervical carcinoma in Southern Mexico: Human papillomavirus and cofactors.
Cancer Detect Prev, 32 (2009), pp. 300-307
[26.]
S. Chichareon, R. Herrero, N. Muñoz, F.X. Bosch, M.V. Jacobs, J. Deacon, et al.
Risk factors for cervical cancer in Thailand: a case-control study.
J Natl Cancer Inst, 90 (1998), pp. 50-57
[27.]
C. Ngelangel, N. Muñoz, F.X. Bosch, G.M. Limson, M.R. Festin, J. Deacon, et al.
Causes of cervical cancer in the Philippines: a case-control study.
J Natl Cancer Inst, 90 (1998), pp. 43-49
[28.]
M.P. Stevens, S.N. Tabrizi, M.A. Quinn, S.M. Garland.
Human papillomavirus genotype prevalence in cervical biopsies from women diagnosed with cervical intraepithelial neoplasia or cervical cancer in Melbourne.
Australia. Int J Gynecol Cancer, 16 (2006), pp. 1017-1024
[29.]
N. Muñoz, F.X. Bosch, S. de Sanjosé, L. Tafur, I. Izarzugaza, M. Gili, et al.
The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain.
Int J Cancer, 52 (1992), pp. 743-749
[30.]
A.P. Cullen, R. Reid, M. Campion, A.T. Lörincz.
Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm.
J Virol, 65 (1991), pp. 606-612
[31.]
J. Berumen, L. Casas, E. Segura, J.L. Amezcua, A. Garcia-Carranca.
Genome amplification of human papillomavirus types 16 and 18 in cervical carcinomas is related to the retention of E1/E2 genes.
Int J Cancer, 56 (1994), pp. 640-645
[32.]
T. Matsukura, S. Koi, M. Sugase.
Both episomal and integrated forms of human papillomavirus type 16 are involved in invasive cervical cancers.
Virology, 172 (1989), pp. 63-72
[33.]
M.A. van Ham, J.M. Bakkers, G.K. Harbers, W.G. Quint, L.F. Massuger, W.J. Melchers.
Comparison of two commercial assays for detection of human papillomavirus (HPV) in cervical scrape specimens: validation of the Roche AMPLICOR HPV test as a means to screen for HPV genotypes associated with a higher risk of cervical disorders.
J Clin Microbiol, 43 (2005), pp. 2662-2667
[34.]
D. van Hamont, M.A. van Ham, J.M. Bakkers, L.F. Massuger, W.J. Melchers.
Evaluation of the SPF10-INNO LiPA human papillomavirus (HPV) genotyping test and the roche linear array HPV genotyping test.
J Clin Microbiol, 44 (2006), pp. 3122-3129
[35.]
C.J. Meijer, J. Berkhof, P.E. Castle, A.T. Hesselink, E.L. Franco, G. Ronco, et al.
Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older.
Int J Cancer, 124 (2009), pp. 516-520
[36.]
J.S. Smith, L. Lindsay, B. Hoots, J. Keys, S. Franceschi, R. Winer, et al.
Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a metaanalysis update.
Int J Cancer, 121 (2007), pp. 621-632
[37.]
G.M. Clifford, S. Gallus, R. Herrero, N. Muñoz, P.J. Snijders, S. Vaccarella, et al.
Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis.
[38.]
G.M. Clifford, J.S. Smith, M. Plummer, N. Muñoz, S. Franceschi.
Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis.
Br J Cancer, 88 (2003), pp. 63-73
[39.]
D.M. Parkin, M. Almonte, L. Bruni, G. Clifford, M.P. Curado, M. Piñeros.
Burden and trends of type-specific human papillomavirus infections and related diseases in the latin america and Caribbean region.
Copyright © 2010. Instituto Nacional de Cancerología
Opciones de artículo
Herramientas