Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Osteoarticular infections in pediatric patients: The aetiological importance of ...
Información de la revista
Vol. 37. Núm. 3.
Páginas 209-210 (Marzo 2019)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 37. Núm. 3.
Páginas 209-210 (Marzo 2019)
Scientific letter
Acceso a texto completo
Osteoarticular infections in pediatric patients: The aetiological importance of Kingella kingae
Infecciones osteoarticulares en pediatria: importancia etiológica de Kingella kingae
Visitas
3343
Amadeu Gené Giralta,
Autor para correspondencia
agene@hsjdbcn.org

Corresponding author.
, Guillermo Ludwig Sanz-Orrioa, Carmen Muñoz-Almagroa, Antoni Noguera-Juliánb
a Department of Microbiology, Barcelona, Spain
b Infectious Diseases Unit, Department of Pediatrics, Barcelona, Spain
Este artículo ha recibido
Disponible módulo formativo: Volumen 37 - Número 3. Saber más
Información del artículo
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Tablas (1)
Table 1. Distribution of culture and molecular methods results in patients with microbiologically osteoarticular infection according to disease type (septic arthritis or osteomyelitis), age and the species detected.
Texto completo

Osteoarticular infection frequently remains microbiologically unconfirmed in the pediatric age.1 Since the early 1990s Kingella kingae has emerged as a major etiological agent of osteomyelitis and septic arthritis in children aged less than 4 years.2 Recently, the implementation of molecular detection assays (MDA) has established the real role of this microorganism in osteoarticular infections.2–5

We conducted a retrospective study in a cohort of pediatric patients (<18 years at inclusion) diagnosed with septic arthritis and osteomyelitis between January 2012 and May 2016 at Hospital Sant Joan de Déu (Barcelona). Samples were obtained through arthrocentesis or arthrotomy in arthritis and bone debridement in osteomielitis. Depending on the volume of the drained material, samples were partly inoculated in situ in aerobic blood culture bottles (SBCB) (BacT/ALERT, BioMérieux; USA) by the orthopedic surgeon. In febrile patients, blood cultures (BC) from peripheral veins were also obtained. Samples were processed by means of routine microbiological procedures (gram staining; blood agar, blood anaerobic agar, chocolate agar and tioglicolate medium cultures), inoculated in BCB, when it was not previously done, and to be tested by specific real-time PCR.

PCR targeting the rtxA toxin gene of K. kingae (accession number EF067866) slighted adapted from a previously PCR design.5 The primers and probe used in our site were KK-forward (5′-GCGCACAAGCAGGTGTACAA-3′), KK-reverse (5′-ACCTGCTGCTACTGTACCTGTTTTAG-3′) and the TaqMan probe (6FAM-5′-CTTTGAACAAAGCTGGACACGCAGC-3′-BBQ). Real-time for LytA gene of Streptococcus pneumoniae and CtxrA gene for Neisseria meningitidis were also performed.6,7

During the study period, samples from 88 patients (42.0% females, median [IQR] age: 2.1 [1.2–6.8] years) were processed. In 51 (58.0%) patients, blood cultures were also performed. Diagnosis included 67 septic arthritis and 21 osteomyelitis.

Overall, 49 cases (55.7%) were microbiologically confirmed, including 38 (56.7%) cases of septic arthritis and 11 (52.4%) cases of osteomyelitis. K. kingae (25 cases, 51%) and Staphylococcus aureus (18 cases, 36.7%) were the most frequent pathogens. Hip (13), knee (11), ankle (8), elbow (4), shoulder (2) tibia (5), femur (2) ulna (1), fibula (1), astragalus (1) and sternum (1) were the joins and bones affected.

Table 1 shows the distribution of culture and real-time PCR results in patients with microbiologically confirmed osteoarticular infection according to the clinical diagnosis, the age and the species detected.

Table 1.

Distribution of culture and molecular methods results in patients with microbiologically osteoarticular infection according to disease type (septic arthritis or osteomyelitis), age and the species detected.

  Patients (AR-OM)  Bacteriologically documented (AR-OM)  RC  RC+SBCB  RC+SBCB+BC  RC+SBCB+BC+PCR 
Osteoarticular infections  88 (67–21)  49 (38–11)  21 (23.9%)  28 (31.8%)  32 (36.4%)  49 (55.7%) 
<6 months  3 (3–0)  2 (2–0)  1 (33.3%)  1 (33.3%)  2 (66.7%)  2 (66.7%) 
≥6 months <4 years  54 (47–7)  29 (26–3)  6 (11.1%)  13 (24.1%)  13 (24.1%)  29 (53.7%) 
≥4 years  31 (17–14)  18 (10–8)  14 (45.2%)  14 (45.2%)  17 (54.8%)  18 (58.1%) 
Arthritis  67  38  12 (17.9%)  18 (27.9%)  22 (32.8%)  38 (56.7%) 
Osteomyelitis  21  11  9 (42.9%)  10 (47.6%)  10 (47.6%)  11 (52.4%) 
Kingella kingae  –  25  3 (12%)  10 (40%)  10 (40%)  25 (100%) 
Staphylococcus aureus  –  18  15 (83.4%)  15 (83.4%)  18 (100%)  ND 
Streptococcus pneumoniae  –  2 (66.7%)  2 (66.7%)  2 (66.7%)  3 (100%) 
Streptococcus agalactiae  –  1 (50%)  1 (50%)  2 (100%)  ND 
Neisseria meningitidis  –  1 (100%) 

RC: Routine culture.

SBCB: Osteoarticular sample in blood-culture bottle.

BC: Blood culture.

PCR: Molecular methods.

AR: Arthritis.

OM: Osteomyelitis.

Streptococcus agalactiae was isolated in 2 out of the 3 cases of septic arthritis diagnosed in patients younger than 6 months.

All 25 cases (92% with septic arthritis) of osteoarticular infections caused by K. Kingae were observed in patients aged between 6 months and 4 years. Only 10 (40%) strains of K. kingae were identified by one of the culture methods used (10 in SBCB and 3 also in routine cultures), but 100% of them tested positive by real-time PCR. In patients aged over 4 years (54.8% with septic arthritis) S. aureus was the most frequent pathogen and was found in 17 (54.8%) out of 31 cases. Most S. aureus isolates (15 out of 18) grew both in BCB and routine culture, while the other 3 were only isolated in BC.

Etiological diagnosis was exclusively attributable to real-time PCR in 17 out of 49 cases (34.7%).

Overall, patients with arthritis were younger (1.5 vs 6.5 years) and more often diagnosed with K. kingae infections (34.3% vs 9.5%) than those affected with osteomyelitis.

This study shows that the bacterial etiology of osteoarticular infections in children is closely related to the age of patient, and clearly outlines three different periods. During the first months of life osteoarticular infection is an infrequent event but usually caused by group B streptococci, as in late-onset neonatal sepsis.8K. kingae almost exclusively affects infants and toddlers, in fact, in 22 out of 25 (88%) K. kingae cases, patients were aged between six months and two years. Because K. kingae osteoarticular infections usually associate negative gram stain (100% in this study), mild clinical symptoms and mild alteration of plasmatic inflammation markers,2 differential diagnosis with non-infectious causes of arthritis (i.e. transient synovitis of the hip) is difficult.9 In these cases, culture in SBCB is important to isolate the microorganism,2 but MDA are critical for proper diagnosis and early treatment. That is why, specific K. kingae MDA should be available as a routine test in hospitals with pediatric patients. MDA also improve the detection of S. pneumoniae and N. meningitidis.

In patients aged >4 years, S. aureus remains the main cause of both arthritis and osteomyelitis,5 in our study 94.4% cases. Due to the efficiency of routine cultures for S. aureus, inoculation of samples in BCB does not improve the isolation rate. Moreover, previous studies have shown that S. aureus-specific PCR assays offer no advantages over classical cultures.3,10

Funding

This study has not received specific funding.

References
[1]
O.A. Gafur, L.A.B. Copley, S.T. Hollmig, R.H. Browne, L.A. Thornton, S. Crawford.
The impact of current epidemiology of pediatric musculoskeletal infection on evaluation and treatment guidelines.
J Pediatr Orthop, 28 (2008), pp. 777-785
[2]
P. Yagupsky.
Kingella kingae: carriage, transmission, and disease.
Clin Microbiol Rev, 28 (2015), pp. 54-79
[3]
S. Chometon, Y. Benito, M. Chaker, S. Boisset, C. Ploton, J. Bérard, et al.
Specific real-time polymerase chain reaction places Kingella kingae as the most common cause of osteoarticular infections in young children.
Pediatr Infect Dis J, 26 (2007), pp. 377-381
[4]
P. Lehours, A.M. Freydière, O. Richer, C. Burucoa, S. Boisset, F. Lanotte, et al.
The rtxA toxin gene of Kingella kingae: a pertinent target for molecular diagnosis of osteoarticular infections.
J Clin Microbiol, 49 (2011), pp. 1245-1250
[5]
C. Juchler, V. Spyropoulou, N. Wagner, L. Merlini, A. Dhouib, S. Manzano, et al.
The contemporary bacteriologic epidemiology of osteoarticular infections in children in Switzerland.
J Pediatr, 194 (2018), pp. 190-196
Epub 2017 Dec 18
[6]
G. Carvalho Mda, M.L. Tondella, K. McCaustland, L. Weidlich, L. McGee, L.W. Mayer, et al.
Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA.
J Clin Microbiol, 45 (2007), pp. 2460-2466
PubMed PMID: 17537936; PubMed Central PMCID: PMC1951257
[7]
C. Munoz-Almagro, M.T. Rodriguez-Plata, S. Marin, C. Esteva, E. Esteban, A. Gené, et al.
Polymerase chain reaction for diagnosis and serogrouping of meningococcal disease in children.
Diagn Microbiol Infect Dis, 63 (2009), pp. 148-154
[8]
R.H. Baevsky.
Neonatal group B beta-hemolytic Streptococcus osteomyelitis.
Am J Emerg Med, 17 (1999), pp. 619-622
[9]
P. Yagupsky, G. Dubnov-Raz, A. Gené, M. Ephros.
Israeli-Spanish Kingella kingae research group differentiating Kingella kingae septic arthritis of the hip from transient synovitis in young children.
985.e1–989.e1
[10]
M. Haldar, M. Butler, C.D. Quinn, C.W. Stratton, Y.W. Tang, C.A. Burnham.
Evaluation of a real-time PCR assay for simultaneous detection of Kingella kingae and Staphylococcus aureus from synovial fluid in suspected septic arthritis.
Ann Lab Med, 34 (2014), pp. 313-316
Epub 2014 Jun 19
Copyright © 2018. Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.eimc.2020.11.006
No mostrar más