Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Regulación de la ingesta alimentaria: una perspectiva clínica
Información de la revista
Vol. 52. Núm. 8.
Páginas 404-430 (Octubre 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 52. Núm. 8.
Páginas 404-430 (Octubre 2005)
Revisiones
Acceso a texto completo
Regulación de la ingesta alimentaria: una perspectiva clínica
Regulation of food intake: a clinical perspective
Visitas
18033
J. Salvadora,
Autor para correspondencia
jsalvador@unav.es

Correspondencia: Dr. J. Salvador. Departamento de Endocrinología y Nutrición. Clínica Universitaria de Navarra. Universidad de Navarra. Avda. Pío XII, 36. 31008 Pamplona. Navarra. España.
, G. Frühbecka,b
a Departamento de Endocrinología y Nutrición. Clínica Universitaria de Navarra. Universidad de Navarra. Pamplona. Navarra. España
b Laboratorio de Investigación Metabólica. Clínica Universitaria de Navarra. Universidad de Navarra. Pamplona. Navarra. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Los avances experimentados en los conocimientos de la fisiología de la regulación de la ingesta alimentaria han permitido identificar un número creciente de moléculas implicadas en los circuitos de apetito-saciedad. Muchas de ellas son sintetizadas en sistemas endocrinos difusos como el tejido adiposo, el tracto gastrointestinal o el sistema nervioso central. Los mecanismos que regulan su secreción y su acción aún no son bien conocidos. No obstante, el descubrimiento de péptidos tales como la leptina, la ghrelina o la colecistocinina, entre otros, nos ha permitido profundizar en el conocimiento de la regulación de la ingesta y sus relaciones con otros sistemas homeostáticos. La emergente neuroendocrinología del apetito y la saciedad nos está suministrando nuevas claves para comprender los mecanismos implicados en la fisiopatología de la obesidad y de los trastornos del comportamiento alimentario. El estudio de las variaciones de las señales de apetito y saciedad que tienen lugar con la pérdida ponderal inducida por la cirugía bariátrica puede conducir al desarrollo de abordajes farmacológicos que permitan reemplazar el tratamiento quirúrgico en los casos de obesidad extrema. Las conexiones recientemente puestas de manifiesto entre la ingesta y el sueño forman parte de otra área de gran interés. Estos conocimientos están abriendo nuevas perspectivas terapéuticas mediante el diseño de fármacos agonistas o antagonistas de los diferentes sistemas funcionales, que en un futuro próximo crearán nuevas expectativas en el control de unas enfermedades de gran prevalencia e impacto sanitario.

Palabras clave:
Ingesta alimentaria
Apetito
Saciedad
Obesidad
Ghrelina
Leptina
Neuropéptido Y
GLP-1

The enormous advances in the field of food intake regulation have led to the identification of a growing number of molecules involved in appetite-satiety circuits. Many of these molecules are synthesized in diffuse endocrine systems such as the adipose tissue, the gastrointestinal tract and central nervous system. The exact mechanisms that regulate their synthesis and secretion are not yet well known. Nevertheless, as a consequence of the discovery of peptides such as leptin, ghrelin, and cholecystokinin, among others, greater knowledge is being gained on the pathophysiology of food intake and its relationships with other homeostatic systems. Thus, the neuroendocrinology of food intake is providing us with new keys for understanding the mechanisms involved in the pathophysiology of obesity and eating disorders. Study of the changes in appetite and satiety signals associated with weight loss induced by bariatric surgery may culminate in the design of new therapeutic approaches to substitute surgical treatment in patients with morbid obesity. The recent associations demonstrated between eating and sleeping represent other area of great interest. All this information is opening up new therapeutic perspectives directed at the development of agonist and antagonist drugs, which may prove highly useful in the treatment of highly prevalent diseases with a devastating impact on public health.

Key words:
Food intake
Appetite
Satiety
Obesity
Ghrelin
Leptin
Neuropeptide Y
GLP-1
El Texto completo está disponible en PDF
Bibliografía
[1.]
A.A. Hedley, C.L. Ogden, C.L. Johnson, M.D. Carroll, L.R. Curtin, K.M. Flegal.
Prevalence of overweight and obesity among US children, adolescents and adults, 1999-2002.
JAMA, 291 (2004), pp. 2847-2850
[2.]
J.S. Flier.
Obesity wars: molecular progress confronts an expanding epidemic.
Cell, 116 (2004), pp. 337-350
[3.]
C.T. Montague, I.S. Farooqi, J.P. Whitehead, M.A. Soos, H. Rau, N.J. Wareham, et al.
Congenital leptin deficiency is associated with severe early-onset obesity in humans.
Nature, 387 (1997), pp. 903-908
[4.]
K. Clement, C. Vaisse, N. Lahlou, S. Cabrol, V. Pelloux, D. Cassuto, et al.
A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.
Nature, 392 (1998), pp. 398-401
[5.]
I.S. Farooqi, J.M. Keogh, G.S. Yeo, E.J. Lank, T. Cheetham, S. O’Rahilly.
Clinical spectrum of obesity and mutations in the melanocortin-4 receptor gene.
N Engl J Med, 348 (2003), pp. 1085-1095
[6.]
J. Marx.
Cellular warriors at the battle of the bulge.
Science, 299 (2003), pp. 846-849
[7.]
N.M. Neary, A.P. Goldstone, S.R. Bloom.
Appetite regulation: from the gut to the hypothalamus.
Clin Endocrinol, 60 (2004), pp. 153-160
[8.]
G.J. Schwartz.
Biology of eating behavior in obesity.
Obes Res, 12 (2004), pp. 102S-106S
[9.]
S.P. Kalra, M.G. Dube, S. Pu, B. Xu, T. Horvath, P.S. Kalra.
Interacting appetite-regulating pathways in the hypothalamic regulation of body weight.
Endocr Rev, 20 (1999), pp. 68-100
[10.]
G. Frühbeck, S.A. Jebb, A.M. Prentice.
Leptin: physiology and pathophysiology.
Clin Physiol, 18 (1998), pp. 349-419
[11.]
S.C. Woods.
Gastrointestinal satiety signals. I. An overview of gastrointestinal signals that influence food intake.
Am J Physiol Gastrointest Liver Physiol, 286 (2004), pp. G7-13
[12.]
J. Gibbs, R.C. Young, G.P. Smith.
Cholecystokinin decreases food intake in rats.
J Comp Physiol Psychol, 84 (1973), pp. 488-495
[13.]
L.I. Larsson, J.F. Rehfeld.
Distribution of gastrin and CCK cells in the rat gastrointestinal tract. Evidence for the occurrence of three distinct cell types storing COOH-terminal gastrin immunoreactivity.
Histochemistry, 58 (1978), pp. 23-31
[14.]
R.A. Liddle, I.D. Goldfine, M.S. Rosen, R.A. Taplitz, J.A. Williams.
Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding and relationship to gallbladder contraction.
J Clin Invest, 75 (1985), pp. 1144-1152
[15.]
J. McLaughlin, M. Grazia Luca, M.N. Jones, M. D’Amato, G.J. Dockray, D.G. Thompson.
Fatty acid chain length determines cholecystokinin secretion and effect on human gastric motility.
Gastroenterology, 116 (1999), pp. 46-53
[16.]
T.H. Moran, K.P. Kinzig.
Gastrointestinal satiety signals. II. Cholecystokinin.
Am J Physiol Gastrointest Liver Physiol, 286 (2004), pp. G183-G188
[17.]
T.H. Moran, A.R. Baldessarini, C.F. Salorio, T. Lowery, G.J. Schwartz.
Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin.
Am J Physiol Regul Integr Comp Physiol, 272 (1997), pp. R1245-R1251
[18.]
H.R. Berthoud, T.L. Powley.
Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
J Comp Neurol, 319 (1992), pp. 261-276
[19.]
G.J. Schwartz, P.R. McHugh, T.H. Moran.
Gastric loads and cholecystokinin sinergistically stimulate rat gastric vagal afferents.
Am J Physiol Regul Integr Comp Physiol, 265 (1993), pp. R872-R876
[20.]
G.P. Smith, C. Jerome, R. Norgren.
Afferent axons in abdominal vagus mediate satiety effect of cholecystokinin in rats.
Am J Physiol, 249 (1985), pp. R638-R641
[21.]
W. Fan, K.L. Ellacott, I.G. Halatcev, K. Takahashi, P. Yu, R.D. Cone.
Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system.
Nat Neurosci, 7 (2004), pp. 335-336
[22.]
T.H. Moran, P.J. Ameglioo, H.J. Peyton, G.J. Schwartz, P.R. McHugh.
Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys.
Am J Physiol Regul Integr Comp Physiol, 265 (1993), pp. R620-R624
[23.]
D. Matzinger, L. Degen, J. Drewe, J. Meuli, R. Duebendorfer, N. Ruckstuhl, et al.
The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans.
Gut, 46 (2000), pp. 688-693
[24.]
T.H. Moran, P.R. McHugh.
Cholecystokinin suppresses food intake by inhibiting gastric emptying.
Am J Physiol Regul Integr Comp Physiol, 242 (1982), pp. R491-R497
[25.]
J.N. Crawley, R.L. Corwin.
Biological actions of cholecystokinin.
Peptides, 15 (1994), pp. 731-755
[26.]
D.B. West, D. Fey, S.C. Woods.
Cholecystokinin persistently suppresses meal size, but not food intake in free-feeding rats.
Am J Physiol Regul Integr Comp Physiol, 246 (1984), pp. R776-R787
[27.]
N. Muurahainenn, H.R. Kissileff, A.J. Derogatis, F.X. Pi-Sunyer.
Effects of cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying in man.
Physiol Behav, 44 (1988), pp. 644-649
[28.]
J.E. Cox, G.S. Perdue, W.J. Tyler.
Suppression of sucrose intake by continuous near-celiac and intravenous cholecystokinin infusions in rats.
Am J Physiol Regul Integr Comp Physiol, 268 (1995), pp. R150-R155
[29.]
J.N. Crawley, M.C. Beinfeld.
Rapid development of tolerance to the behavioural actions of cholecystokinin.
Nature, 302 (1983), pp. 703-706
[30.]
C.A. Matson, M.F. Wiater, J.L. Kuijper, D.S. Weigle.
Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake.
Peptides, 18 (1997), pp. 1275-1278
[31.]
C.A. Riedy, M. Chávez, D.E.P. Figlewicz, S.C. Woods.
Central insulin enhances sensitivity to cholecystokinin.
Physiol Behav, 58 (1995), pp. 755-760
[32.]
J.J. Holst.
Glucagon-like peptide-1: physiology and therapeutic potential.
Curr Opin Endocrinol Diab, 12 (2005), pp. 56-62
[33.]
J.J. Holst.
Enteroglucagon.
Annu Rev Physiol, 59 (1997), pp. 257-271
[34.]
H.J. Balks, J.J. Holst, A. Von zur Muhlen, G. Brabant.
Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors.
J Clin Endocrinol Metab, 82 (1997), pp. 786-790
[35.]
C. Hermann, R. Goke, G. Richter, H.C. Fehman, R. Arnbold, B. Goke.
Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients.
Digestion, 56 (1995), pp. 117-126
[36.]
H.C. Fehmann, R. Goke, B.B. Goke.
Cell and molecular biology of the incretin hormones glucagon-like peptide-1 and glucosedependent insulin-releasing polypeptide.
Endocr Rev, 16 (1995), pp. 390-410
[37.]
J.P. Gutzwiller, B. Goke, J. Drewe, P. Hildebrand, S. Ketterer, D. Handschin, et al.
Glucagon-like peptide-1: a potent regulator of food intake in humans.
Gut, 44 (1999), pp. 81-86
[38.]
M. Tang-Christensen, P.J. Larsen, R. Goke, A. Fink-Jensen, D.S. Jessop, M. Moller, et al.
Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats.
Am J Physiol, 271 (1996), pp. R848-R856
[39.]
P.J. Larsen, M. Tang-Christensen, J.J. Holst, C. Orskov.
Distribution of glucagon-like peptide-1 and other pre-proglucagon-derived peptides in the rat hypothalamus and brainstem.
Neuroscience, 77 (1997), pp. 257-270
[40.]
K.P. Kinzig, D.A. D’Alessio, R.J. Seeley.
The diverse roles of CNS GLP-1 in the control of food intake and the mediation of visceral illness.
J Neurosci, 22 (2002), pp. 10470-10476
[41.]
A.P. Goldstone, J.G. Mercer, I. Gunn, K.M. Moar, C.M. Edwards, M. Rossi, et al.
Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents.
FEBS Lett, 415 (1997), pp. 134-138
[42.]
E. Naslund, B. Barkeling, N. King, M. Gutniak, J.E. Blundell, J.J. Holst, et al.
Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men.
Int J Obes Relat Metab Disord, 23 (1999), pp. 304-311
[43.]
J.P. Gutzwiller, J. Drewe, B. Goke, H. Schmidt, B. Rorer, J. Lareida, et al.
Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2.
Am J Physiol, 276 (1999), pp. R1541-R1544
[44.]
A.J. Kastin, V. Akerstrom, W. Pan.
Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier.
J Mol Neurosci, 18 (2002), pp. 7-14
[45.]
S. Delgado-Aros, D.Y. Kim, D.D. Burton, G.M. Thomforde, D. Stephens, B.H. Brinkmann, et al.
Effect of GLP-1 on gastric volume, emptying, maximum volume ingested and postprandial symptoms in humans.
Am J Physiol, 282 (2002), pp. G424-G431
[46.]
T.J. Kieffer, C.H. McIntosh, R.A. Pederson.
Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide-1 in vitro and in vivo by dipeptidyl peptidase IV.
Endocrinology, 136 (1995), pp. 3585-3596
[47.]
R. Goke, H.C. Fehmann, T. Linn, H. Schmidt, M. Krause, J. Eng, et al.
Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide-1-(7-36)-amide receptor of insulin-secreting beta-cells.
J Biol Chem, 268 (1993), pp. 19650-19655
[48.]
L.A. Scrocchi, T.J. Brown, N. MaClusky, P.L. Brubaker, A.B. Auerbach, A.L. Joyner, et al.
Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene.
Nat Med, 2 (1996), pp. 1254-1258
[49.]
B. Ahren, E. Simonsson, H. Larsson, M. Landin-Olsson, H. Torgeirsson, P.A. Jansson, et al.
Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes.
Diabetes Care, 25 (2002), pp. 869-875
[50.]
T.E. Adrian, A.J. Bacarese-Hamilton, H.A. Smith, P. Chohan, K.J. Manolas, S.R. Bloom.
Distribution and postprandial release of porcine peptide YY.
J Endocrinol, 113 (1987), pp. 11-14
[51.]
D. Grandt, M. Schimiczek, C. Beglinger, P. Layer, H. Goebell, V.E. Eysselein, et al.
Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36.
Regul Pept, 51 (1994), pp. 151-159
[52.]
D. Larhammar.
Structural diversity of receptors for neuropeptide Y peptide YY and pancreatic polypeptide.
Regul Pept, 65 (1996), pp. 165-174
[53.]
R.L. Batterham, S.R. Bloom.
The gut hormone peptide YY regulates appetite.
Ann NY Acad Sci, 994 (2003), pp. 162-168
[54.]
S.H. Adams, W.B. Won, S.E. Schonhoff, A.B. Leite, J.R. Paterniti Jr.
Effects of peptide YY (3-36) on short-term food intake in mice are not affected by prevailing plasma ghrelin levels.
Endocrinology, 145 (2004), pp. 4967-4975
[55.]
R.L. Batterham, C.W. Le Roux, M.A. Cohen, A.J. Park, S.M. Ellis, M. Patterson, et al.
Inhibition of food intake in obese subjects by peptide YY 3-36.
N Engl J Med, 349 (2003), pp. 941-948
[56.]
C.L. Dakin, I. Gunn, C.J. Small, C.M. Edwards, D.L. Hay, D.M. Smith, et al.
Oxyntomodulin inhibits food intake in the rat.
Endocrinology, 142 (2001), pp. 4244-4250
[57.]
M.A. Cohen, S.M. Ellis, C.W. Le Roux, R.L. Batterham, A. Park, M. Patterson, et al.
Oxyntomodulin suppresses appetite and reduces food intake in humans.
J Clin Endocrinol Metab, 88 (2003), pp. 4696-4701
[58.]
E.D. Shin, D.J. Drucker, P.L. Brubaker.
Glucagon-like peptide 2: an update.
Curr Opin Endocrinol Diab, 12 (2005), pp. 53-71
[59.]
M. Tang-Christensen, P.J. Larsen, J. Thulesen, J. Romer, N. Vrang.
The proglucagon-derived peptide glucagon-like peptide-2 is a neurotransmitter involved in the regulation of food intake.
Nat Med, 6 (2000), pp. 802-807
[60.]
L.B. Sorensen, A. Flint, A. Raben, B. Hartmann, J.J. Holst, A. Astrup.
No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects.
Int J Obes Relat Metab Disord, 27 (2003), pp. 450-456
[61.]
P.T. Schmidt, E. Naslund, P. Gryback, H. Jacobsson, B. Hartmann, J.J. Holst, et al.
Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety.
Regul Pept, 116 (2003), pp. 21-25
[62.]
N. Geary.
Glucagon and the control of meal size.
Satiation. From gut to brain, pp. 164-197
[63.]
J. Le Sauter, U. Noh, N. Geary.
Hepatic portal infusion of glucagons antibodies increases spontaneous meal size in rats.
Am J Physiol, 261 (1991), pp. R162-R165
[64.]
J. Gibbs, J.L. Guss.
Bombesin-like peptides and satiety.
Appetite, 24 (1995), pp. 257
[65.]
E.E. Ladenheim, L.L. Hampton, A.C. Whitney, W.O. White, J.F. Battey, T.H. Moran.
Disruptions in feeding and body weight control in gastrin-releasing peptide receptor deficient mice.
J Endocrinol, 174 (2002), pp. 273-281
[66.]
P.A. Rushing, J. Gibbs.
Prolongation of intermeal interval by gastrin-releasing peptide depends upon time on delivery.
Peptides, 19 (1998), pp. 1439-1442
[67.]
T.A. Lutz, E. Del Prete, E. Scharrer.
Reduction of food intake in rats by intraperitoneal injection of low doses of amylin.
Physiol Behav, 55 (1994), pp. 581-595
[68.]
T.A. Lutz, M. Seen, J. Althaus, E. Del Prete, F. Ehrensperger, E. Scharrer.
Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effect of amylin and calcitonin gene-related peptide (CGRP) in rats.
Peptides, 16 (1998), pp. 457-462
[69.]
I. Sobhani, A. Bado, C. Vissuzaine, M. Byuse, S. Kermorgant, J.P. Laigneau, et al.
Leptin secretion and leptin receptor in the human stomach.
Gut, 47 (2000), pp. 178-183
[70.]
K. Fujimoto, K. Fukagawa, T. Sakata, P. Tso.
Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats.
J Clin Invest, 91 (1993), pp. 1830-1833
[71.]
M. Liu, T. Doi, L. Shen, S.C. Woods, R.J. Seeley, S. Zheng, et al.
Intestinal satiety protein apolipoprotein-IV is synthesized and regulated in rat hypothalamus.
Am J Physiol, 280 (2001), pp. R1382-R1387
[72.]
S. Okada, D.A. York, G.A. Bray, J. Mei, C. Erlanson-Albertsson.
Differential inhibition of fat intake in two strains of rats by the peptide enterostatin.
Am J Physiol, 262 (1992), pp. R1111-R1116
[73.]
E.C. Lotter, R. Krinsky, J.M. McKay, C.M. Treneer, D. Porter Jr, S.C. Woods.
Somatostatin decreases food intake in rats and baboons.
J Comp Physiol Psychol, 95 (1981), pp. 278-287
[74.]
R.J. Lieverse, J.B. Jansen, A.M. Masclee, C.B. Lamers.
Effects of somatostatin on human satiety.
Neuroendocrinology, 61 (1995), pp. 112-116
[75.]
T.A. Lutz, R. Rossi, J. Althaus, E. Del Prete, E. Scharrer.
Amylin reduces food intake more potently than calcitonin gene-related peptide (CGRP) when injected into the lateral brain ventricle in rats.
Peptides, 19 (1998), pp. 1533-1540
[76.]
M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, K. Kangawa.
Ghrelin is a growth hormone-releasing acylated peptide from stomach.
Nature, 402 (1999), pp. 656-660
[77.]
R.G. Smith, L.H. Van der Ploeg, A.D. Howard, S.D. Feighner, K. Cheng, G.J. Hickey, et al.
Peptidomimetic regulation of growth hormone secretion.
Endocr Rev, 18 (1997), pp. 621-645
[78.]
W.A. Banks, M. Tschop, S.M. Robinson, M.L. Heiman.
Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure.
J Pharmacol Exp Ther, 302 (2002), pp. 822-827
[79.]
M. Tena-Sempere, M.L. Barreiro, L.C. González, F. Gaytan, F.P. Zhang, J.E. Caminos, et al.
Novel expression and functional role of ghrelin in rat testis.
Endocrinology, 143 (2002), pp. 717-725
[80.]
M. Korbonits, M. Kojima, K. Kangawa, A.B. Grossman.
Presence of ghrelin in normal and adenomatous human pituitary.
Endocrine, 14 (2001), pp. 101-104
[81.]
M. Papotti, C. Ghe, P. Cassoni, F. Catapano, R. Deghenghi, E. Ghigo, et al.
Growth hormone secretagogue binding sites in peripheral human tissues.
J Clin Endocrinol Metab, 85 (2000), pp. 3803-3807
[82.]
A.M. Wren, L.J. Seal, M.A. Cohen, A.E. Brynes, G.S. Frost, K.G. Murphy, et al.
Ghrelin enhances appetite and increases food intake in humans.
J Clin Endocrinol Metab, 86 (2001), pp. 5992-5995
[83.]
Y. Date, N. Murakami, K. Toshinai, S. Matsukura, A. Niijima, H. Matsuo, et al.
The role of gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats.
Gastroenterology, 123 (2002), pp. 1120-1128
[84.]
A. Inui, A. Asakawa, C.Y. Bowers, G. Mantovani, A. Laviano, M.M. Meguid, et al.
Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ.
FASEB J, 18 (2004), pp. 439-456
[85.]
J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, I. Wakagayashi.
Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats.
Diabetes, 50 (2001), pp. 2438-2443
[86.]
M.S. Mondal, Y. Date, H. Yamaguchi, K. Toshinai, T. Tsuruta, K. Kangawa, et al.
Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus.
Regul Pept, 126 (2005), pp. 55-59
[87.]
L. Wang, D.H. Saint-Pierre, Y. Tache.
Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus.
Neurosci Lett, 325 (2002), pp. 47-51
[88.]
H. Ueno, H. Yamaguchi, K. Kangawa, M. Nakazato.
Ghrelin: a gastric peptide that regulates food intake and energy homeostasis.
Regul Pept, 126 (2005), pp. 11-19
[89.]
L. Brunetti, L. Recinella, G. Orlando, B. Michelotto, C. Di Nisio, M. Vacca.
Effects of ghrelin and amylin on dopamine, norepinephrine and serotonin release in the hypothalamus.
Eur J Pharmacol, 454 (2002), pp. 189-192
[90.]
D.E. Cummings, J.Q. Purnell, R.S. Frayo, K. Schmidova, B.E. Wisse, D.S. Weigle.
A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans.
Diabetes, 50 (2001), pp. 1714-1719
[91.]
E. Nakagawa, N. Nagaya, H. Okumura, M. Enomoto, H. Oya, F. Ono, et al.
Hyperglycaemia suppresses the secretion of ghrelin, a novel growth-hormone-releasing peptide: responses to the intravenous and oral administration of glucose.
Clin Sci (Lond), 103 (2002), pp. 325-328
[92.]
J. Sánchez, P. Oliver, A. Palou, C. Picó.
The inhibition of gastric ghrelin production by food intake in rats is dependent on the type of macronutrient.
Endocrinology, 145 (2004), pp. 5049-5055
[93.]
P. Monteleone, R. Bencivenga, N. Longobardi, C. Serritella, M. Maj.
Diffrerential responses of circulating ghrelin to highfat or high-carbohydrate meal in healthy women.
J Clin Endocrinol Metab, 88 (2003), pp. 5510-5514
[94.]
M.A. Lazarczyk, M. Lazarczyk, T. Grzela.
Ghrelin: a recently discovered gut-brain peptide.
Int J Mol Med, 12 (2003), pp. 279-287
[95.]
A.D. Strader, S.C. Woods.
Gastrointestinal hormones and food intake.
Gastroenterology, 128 (2005), pp. 175-191
[96.]
T. Shiiya, M. Nakazato, M. Mizuta, Y. Date, M.S. Mondal, M. Tanaka, et al.
Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion.
J Clin Endocrinol Metab, 87 (2002), pp. 240-244
[97.]
R.H. Boger, C. Skamira, S.M. Bode-Boger, G. Brabant, A. Von zur Muhlen, J.C. Frolich.
Nitric oxide may mediate the hemodynamic effects of recombinant growth hormone in patients with acquired growth hormone deficiency: a double blind placebocontrolled study.
J Clin Invest, 98 (1996), pp. 2706-2713
[98.]
K.E. Wiley, A.P. Davenport.
Comparison of vasodilators in human internal mammary artery: ghrelin is a potent physiological antagonist of endothelin-1.
Br J Pharmacol, 136 (2002), pp. 1146-1152
[99.]
G. Baldanzi, N. Filigheddu, S. Cutrupi, F. Catapano, S. Bonissoni, A. Fubini, et al.
Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT.
J Cell Biol, 159 (2002), pp. 1029-1037
[100.]
P. Cassoni, M. Papotti, C. Ghe, F. Catapano, A. Sapino, A. Graziani, et al.
Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines.
J Clin Endocrinol Metab, 86 (2001), pp. 1738-1745
[101.]
R.V. Considine, M.K. Sinha, M.L. Heiman, A. Kriauciunas, T.W. Stephens, M.R. Nyce, et al.
Serum immunoreactive leptin concentrations in normal-weight and obese humans.
N Engl J Med, 334 (1996), pp. 292-295
[102.]
P.J. Havel.
Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance.
Proc Nutr Soc, 59 (2000), pp. 359-371
[103.]
W.G. Haynes, D.A. Morgan, S.A. Walsh, A.L. Mark, W.I. Sivitz.
Receptor-mediated regional sympathetic nerve activation by leptin.
J Clin Invest, 100 (1997), pp. 270-278
[104.]
L.A. Tartaglia.
The leptin receptor.
J Biol Chem, 272 (1997), pp. 6093-6096
[105.]
D.S. Weigle, P.E. Duell, W.E. Connor, R.A. Steiner, M.R. Soules, J.L. Kuijper.
Effect of fasting, refeeding and dietary fat restriction on plasma leptin levels.
J Clin Endocrinol Metab, 82 (1997), pp. 561-565
[106.]
P.J. Havel.
Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis.
Exp Biol Med, 226 (2001), pp. 963-977
[107.]
T.J. Horton, H. Drougas, A. Brachey, G.W. Reed, J.C. Peters, J.O. Hill.
Fat and carbohydrate overfeeding: different effects on energy storage.
Am J Clin Nutr, 62 (1995), pp. 19-29
[108.]
D.S. Ludwig, K.E. Peterson, S.L. Gortmaker.
Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis.
[109.]
P.J. Havel, R. Townsend, L. Chaump, K. Teff.
High fat meals reduce 24-h circulating leptin concentrations in women.
Diabetes, 48 (1999), pp. 334-341
[110.]
D.G. Baskin, D.J. Wilcox, D.P. Figlewicz, D.M. Dorsa.
Insulin and insulin-like growth factors in the CNS.
Trends Neurosci, 11 (1988), pp. 107-111
[111.]
M.W. Schwartz, R.N. Bergman, S.E. Kahn, G.J. Taborsky Jr, L.D. Fisher, A.J. Sipols, et al.
Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs: quantitative aspects and implications for transport.
J Clin Invest, 88 (1991), pp. 1272-1281
[112.]
L.A. Foster, N.K. Ames, R.S. Emery.
Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-1.
Physiol Behav, 50 (1991), pp. 745-749
[113.]
A.J. Sipols, D.GG. Baskin, M.W. Schwartz.
Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression.
Diabetes, 44 (1995), pp. 147-151
[114.]
J.C. Bruning, D. Gautam, D.J. Burks, J. Gillette, M. Schubert, P.C. Orban, et al.
Role of brain insulin receptor in control of body weight and reproduction.
Science, 89 (2000), pp. 2122-2125
[115.]
D.P. Figlewicz, A.J. Sipols, R.J. Seeley, M. Chávez, S.C. Woods, D. Porte Jr.
Intraventricular insulin enhances the meal-suppressive efficacy of intraventricular cholecystokinin octapeptide in the baboon.
Behav Neurosci, 109 (1995), pp. 567-569
[116.]
F. Leonetti, G. Iacobellis, M.C. Ribaudo, A. Zappaterreno, C. Tiberti, C.V. Iannucci, et al.
Acute insulin infusion decreases plasma ghrelin levels in uncomplicated obesity.
Regul Pept, 122 (2004), pp. 179-183
[117.]
Y. Oomura, T. Ono, H. Ooyama, M.J. Wayner.
Glucose and osmosensitive neurones of the rat hypothalamus.
Nature, 222 (1969), pp. 282-284
[118]
Bergen HT, Monkman N, Mobbs CV. Injection with gold thioglucose impairs sensitivity to glucose: evidence that glucose-responsive neurons are important for long-term regulation of body weight. Brain Res. 196;734:332-6.
[119.]
D.A. Thompson, R.G. Campbell.
Hunger in humans induced by 2-deoxy-D-glucose: glucoprivic control of taste preference and food intake.
Science, 198 (1977), pp. 1065-1068
[120.]
L.A. Campfield, FJ. Smith.
Transient declines in blood glucose signal meal initiation.
Int J Obes, 14 (1990), pp. 15-31
[121.]
S.C. Woods, L.J. Stein, L.D. McKay, D. Porte Jr.
Suppression of food intake by intravenous nutrients and insulin in the baboon.
Am J Physiol, 247 (1984), pp. R393-R401
[122.]
J.S. Fisler, M. Egawa, G.A. Bray.
Peripheral 3-hydroxybutyrate and food intake in a model of dietary fat-induced obesity: effect of vagotomy.
Physiol Behav, 58 (1995), pp. 1-7
[123.]
S. Ritter, J.B. Ritter, L. Cromer.
2-deoxy-D-glucose and mercaptoacetate induce different patterns of macronutrient ingestion.
Physiol Behav, 66 (1999), pp. 709-715
[124.]
V. Sergeyev, C. Broberger, O. Gorbatyuk, T. Hokfelt.
Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AgRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus.
Neuroreport, 11 (2000), pp. 117-121
[125.]
G.Q. Chang, O. Karatayev, Z. Davydova, S. Leibowitz.
Circulating triglycerides impact on orexigenic peptides and neuronal activity in hypothalamus.
Endocrinology, 145 (2004), pp. 3904-3912
[126.]
M. Porrini, A. Santangelo, R. Crovetti, P. Riso, G. Testolin, J.E. Blundell.
Weight, protein, fat and timing of preloads affect food intake.
Physiol Behav, 62 (1997), pp. 563-570
[127.]
H. Nagase, G.A. Bray, D.A. York.
Effects of pyruvate and lactate on food intake in rat strains sensitive and resistant to dietary obesity.
Physiol Behav, 59 (1996), pp. 555-560
[128.]
M.R. Freedman, J.C. King, F. Kennedy.
Popular diets: a scientific review.
Obes Res, 9 (2001), pp. S1-40
[129.]
C.R. Plata-Salaman.
Cytokines and feeding suppression: an integrative view from neurologic to molecular levels.
Nutrition, 11 (1995), pp. 674-677
[130.]
W. Langhans, B. Hrupka.
Interleukins and tumor necrosis factor as inhibitors of food intake.
Neuropeptides, 33 (1999), pp. 415-424
[131.]
E.A. Medina, K.L. Erickson, K.L. Stanhope, P.J. Havel.
Evidence that tumor necrosis factor-alpha-induced hyperinsulinemia prevents decreases of circulating leptin during fasting in rats.
Metabolism, 51 (2002), pp. 1104-1110
[132.]
P.A. Tataranni, D.E. Larsonn, S. Snitker, J.B. Young, J.P. Flatt, E. Ravussin.
Effects of glucocorticoids on energy metabolism and food intake in humans.
Am J Physiol, 271 (1996), pp. E317-E325
[133.]
M. Chávez, R.J. Seeley, P.K. Green, C.W. Wilkinson, M.W. Schwartz, S.C. Woods.
Adrenalectomy increases sensitivity to central insulin.
Physiol Behav, 62 (1997), pp. 631-634
[134.]
D.A. York.
Lessons from animal models of obesity.
Endocrinol Metab Clin North Am, 25 (1996), pp. 781-800
[135.]
D. Baura, D.M. Foster, K. Kaiyala, J.r. Porte D, S.E. Kahn, M.W. Schwartz.
Insulin transport from plasma into the central nervous system is inhibited by dexamethasone in dogs.
Diabetes, 45 (1996), pp. 86-90
[136.]
W.M. Kong, N.M. Martin, K.L. Smith, J.V. Gardiner, I.P. Connoley, D.A. Stephens, et al.
Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure.
Endocrinology, 145 (2004), pp. 5252-5258
[137.]
M. Druce, S.R. Bloom.
Central regulators of food intake.
Curr Opin Clin Nutr Metab Care, 6 (2003), pp. 361-367
[138.]
R.D. Broadwell, M.W. Brightman.
Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood.
J Comp Neurol, 166 (1976), pp. 257-283
[139.]
R. Vettor, R. Fabris, C. Pagano, G. Federspil.
Neuroendocrine regulation of eating behavior.
J Endocrinol Invest, 25 (2002), pp. 836-854
[140.]
C. Broberger, J. Johansen, C. Johasson, M. Schalling, T. Hofelt.
The neuropeptide Y/agouti gene-related protein (AgRP) brain circuitry in normal, anorectic and monosodium glutamate-treated mice.
Proc Nat Acad Sci USA, 95 (1998), pp. 15043-15048
[141.]
S.P. Kalra, P.S. Kalra.
Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin.
Endocrine, 22 (2003), pp. 49-56
[142.]
J. Wang, J.T. Dourmashkin, R. Yun, S.F. Leibowitz.
Rapid changes in hypothalamic neuropeptide Y produced by carbohydrate-rich meals that enhance corticosterone and glucose levels.
Brain Res, 848 (1999), pp. 124-136
[143.]
A. Thorsell.
Heilig M. Diverse functions of neuropeptide Y revealed using genetically modified animals.
Neuropeptides, 36 (2002), pp. 182-193
[144.]
L.E. Pritchard, D. Armstrong, N. Davies, R.L. Oliver, C.A. Schmitz, et al.
Agouti-related protein (83-132) is a competitive antagonist at the human melanocortin-4 receptor: no evidence for differential interactions with pro-opiomelanocortin-derived ligands.
J Endocrinol, 180 (2004), pp. 183-191
[145.]
M.M. Hagan, P.A. Rushing, L.M. Pritchard, M.W. Schwartz, A.M. Strack, L.H. Van der Ploeg, et al.
Long-term orexigenic effect of AgRP-(82-132) involve mechanisms other than melanocortin receptor blockade.
Am J Physiol, 279 (2000), pp. R47-52
[146.]
C.J. Small, M.S. Kim, S.A. Stanley, J.R. Mitchell, K. Murphy, D. Morgan, et al.
Effect of chronic central nervous system administration of Agouti-related protein in pair-fed animals.
Diabetes, 50 (2001), pp. 248-254
[147.]
Y.K. Yang, C.M. Harmon.
Recent developments in our understanding of melanocortin system in the regulation of food intake.
Obes Rev, 4 (2003), pp. 239-248
[148.]
I. Yaswen, N. Diehl, M.B. Brennan, U. Hochgeschwender.
Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin.
Nat Med, 5 (1999), pp. 1066-1070
[149.]
D.J. Marsh, G. Hollopeter, D. Huszar, R. Laufer, K.A. Yagaloff, S.L. Fisher, et al.
Response of melanocortin-4 deficient mice to anorectic and orexigenic peptides.
Nat Genet, 21 (1999), pp. 119-122
[150.]
A.S. Chen, D.J. Marsh, M.E. Trumbauer, E.G. Frazier, X.M. Guan, H. Yu, et al.
Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass.
Nat Genet, 26 (2000), pp. 97-102
[151.]
P.R. Couceyro, E.O. Koylu, M.J. Kuhar.
Further studies on the anatomical distribution of CART by in situ hybridization.
J Chem Neuroanat, 12 (1997), pp. 229-241
[152.]
N. Vrang, P.PJ. Larsen, P. Kjristensen, M. Tang-Christensen.
Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat.
Endocrinology, 141 (2000), pp. 794-801
[153.]
P.D. Lambert, P.R. Couceyro, K.M. McGirr, S.E. Dall Vechia, Y. Smith, M.J. Kuhar.
CART peptides in the central control of feeding and interactions with neuropeptide Y.
[154.]
Y.H. Choi, A. Della-Fera, C.L. Li, D.L. Hartzell, D.E. Little, M.J. Kuhar, et al.
CART peptide: central mediator of leptin-induced adipose tissue apoptosis?.
Regul Pept, 121 (2004), pp. 155-162
[155.]
F. Rohner-Jeanrenaud, L.S. Craft, J. Bridwell, T.M. Suter, F.C. Tinsley, D.L. Smiley, et al.
Chronic central infusion of cocaineand amphetamine-regulated transcript (CART 55-102): effects on body weight homeostasis in lean and high-fat-fed obese rats.
Int J Obes, 26 (2002), pp. 143-149
[156.]
W.T. Gibson, P. Pissios, D.J. Trombly, J. Luan, J. Keogh, N. Wareham, et al.
Melanin-concentrating hormone receptor mutations and human obesity: functional analysis.
Obes Res, 12 (2004), pp. 743-749
[157.]
Y. Saito, H.P. Nothacker, Z. Wang, S.H. Lin, F. Leslie, O. Civelli.
Molecular characterization of the melanin-concentrating-hormone receptor.
Nature, 400 (1999), pp. 265-269
[158.]
T. Sakurai.
Reverse pharmacology of orexin: from an orphan GPCR to integrative physiology.
Regul Pept, 126 (2005), pp. 3-10
[159.]
A. Yamanaka, T. Sakurai, T. Katsumoto, M. Yanagisawa, K. Goto.
Chronic intracerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight.
Brain Res, 849 (1999), pp. 248-252
[160.]
A. Yamanaka, C.T. Beuckmannn, J.T. Willie, J. Hara, N. Tsujino, M. Mieda, et al.
Hypothalamic orexin neurons regulate arousal according to energy balance in mice.
Neuron, 38 (2003), pp. 701-713
[161.]
C. Peyron, J. Faraco, W. Rogers, B. Ripley, S.E. Overeem, Y. Chamay, et al.
A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains.
Nat Med, 9 (2000), pp. 991-997
[162.]
R.W. Foltin, J.V. Brady, M.W. Fischman.
Behavioral analysis of marijuana effects on food intake in humans.
Pharmacol Biochem Behav, 25 (1986), pp. 577-582
[163.]
R.D. Mattes, K. Engelman, L.M. Shaw, M.A. Elsohly.
Cannabinoids and appetite stimulation.
Pharmacol Biochem Behav, 49 (1994), pp. 187-195
[164.]
R. Gómez, M. Navarro, B. Ferrer, J.M. Trigo, A. Bilbao, I. Del Arco, et al.
A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding.
J Neurosci, 22 (2002), pp. 9612-9617
[165.]
S. González, J. Manzanares, F. Berrendero, T. Wenger, J. Corchero, T. Bisogno, et al.
Identification of endocannabinoids and cannabinoid CB(1) receptor mRNA in the pituitary gland.
Neuroendocrinology, 70 (1999), pp. 137-145
[166.]
P.D. Cani, M.L. Montoya, A.M. Neyrinck, N.M. Delzenne, D.M. Lambert.
Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide.
Br J Nutr, 92 (2004), pp. 757-761
[167.]
A.N. Verty, J.R. McFarlane, I.S. McGregor, P.E. Mallet.
Evidence for an interaction between CB1 cannabinoid and melanocortin MCR-4 receptors in regulating food intake.
Endocrinology, 145 (2004), pp. 3224-3231
[168.]
M. Venihaki, J.A. Majzoub.
Animal models of CRH deficiency.
Front Neuroendocrinol, 20 (1999), pp. 122-145
[169.]
G.N. Smagin, L.A. Howell, D.H. Ryan, E.B. De Souza, R.B. Harris.
The role of CRF2 receptors in corticotropin-releasing factorand urocortin-induced anorexia.
Neuroreport, 9 (1998), pp. 1601-1606
[170.]
B.G. Stanley, D. Lanthier, A.S. Chin, S.F. Leibowitz.
Suppression of neuropeptide Y-elicited eating by adrenalectomy or hypophysectomy: reversal with corticosterone.
Brain Res, 501 (1989), pp. 32-36
[171.]
T. Suda, K. Kageyama, S. Sakihara, T. Nigawara.
Physiological roles of urocortins, human homologues of fish urotensin I, and their receptors.
Peptides, 25 (2004), pp. 1689-1691
[172.]
H. Ohata, T. Shibasaki.
Effects of urocortin 2 and 3 on motor activity and food intake in rats.
Peptides, 25 (2004), pp. 1703-1709
[173.]
M.G. Dube, T.L. Horvath, C. Leranth, P.S. Kalra, S.P. Kalra.
Naloxone reduces the feeding evoked by intracerebroventricular galanin injection.
Physiol Behav, 56 (1994), pp. 811-813
[174.]
S.E. Kyrkouli, B.G. Stanley, R. Hutchinson, R.D. Seirafi, S.F. Leibowitz.
Peptide-amine interactions in the hypothalamic paraventricular nucleus: analysis of galanin and neuropeptide Y in relation to feeding.
Brain Res, 521 (1990), pp. 185-191
[175.]
H. Kageyama, F. Takenoya, T. Kita, T. Hori, J.L. Guan, S. Shioda.
Galanin-like peptide in the brain: effects on feeding, energy metabolism and reproduction.
Regul Pept, 126 (2005), pp. 21-26
[176.]
C.B. Lawrence, F.M. Baudoin, S.M. Luckman.
Centrally administered galanin-like peptide modifies food intake in the rat: a comparison with galanin.
J Neuroendocrinol, 14 (2002), pp. 853-860
[177.]
A. Sahu, R.E. Carraway, Y.P. Wang.
Evidence that neurotensin mediates the central effect of leptin on food intake in rat.
Brain Res, 888 (2001), pp. 343-347
[178.]
D.J. Clegg, E.L. Air, S.C. Woods, R.J. Seeley.
Eating elicited by orexin-A, but not melanin-concentrating hormone, is opioid mediated.
Endocrinology, 143 (2002), pp. 2995-3000
[179.]
B. Baranowska, E. Wolinska-Witort, E. Wasilewska-Dziubinska, K. Roguski, L. Martynska, M. Chmielowska.
The role of neuropeptides in the disturbed control of appetite and hormone secretion in eating disorders.
Neuro Endocrinol Lett, 24 (2003), pp. 431-434
[180.]
P.S. Kalra, M. Norlin, S.P. Kalra.
Neuropeptide Y stimulates beta-endorphin release in the basal hypothalamus: role of gonadal steroids.
Brain Res, 705 (1995), pp. 353-356
[181.]
M. Giorgetti, L.H. Tecott.
Contributions of 5-HT(2C) receptors to multiple actions of central serotonin systems.
Eur J Pharmacol, 488 (2004), pp. 1-9
[182.]
D.Y. Kuo.
Coadministration of dopamine D1 and D2 agonists additively decreases daily food intake, body weight and hypothalamic neuropeptide Y level in rats.
J Biomed Sci, 9 (2002), pp. 126-132
[183.]
M. Doknic, S. Pekic, M. Zarkovic, M. Medic-Stojanoska, C. Diéguez, F. Casanueva, et al.
Dopaminergic tone and obesity? an insight from prolactinomas treated with bromocriptine.
Eur J Endocrinol, 147 (2002), pp. 77-84
[184.]
J.T. Cheng, D.Y. Kuo.
Both alpha1-adrenergic and D(1)-dopaminergic neurotransmissions are involved in phenylpropanolamine-mediated feeding suppression in mice.
Neurosci Lett, 347 (2003), pp. 136-138
[185.]
Y.H. Jo, D.A. Talmage, L.W. Role.
Nicotinic receptor-mediated effects on appetite and food intake.
J Neurobiol, 53 (2002), pp. 618-632
[186.]
K. Takahashi, H. Suwa, T. Ishikawa, H. Kotani.
Targeted disruption of H3 receptors results in changes in brain histamine tone leading to an obese phenotype.
J Clin Invest, 110 (2002), pp. 1791-1799
[187.]
A.N. Van den Pol.
Weighing the role of hypothalamic feeding neurotransmitters.
Neuron, 40 (2003), pp. 1059-1061
[188.]
C. Blásquez, S. Jegou, M. Feuilloley, A. Rosier, F. Vandesande, H. Vaudry.
Visualization of gamma-aminobutyric acid A receptors on proopiomelanocortin-producing neurons in the rat hypothalamus.
Endocrinology, 135 (1994), pp. 2759-2764
[189.]
J.E. Morley, J.F. Flood.
Competitive antagonism of nitric oxide synthetase causes weight loss in mice.
Life Sci, 51 (1992), pp. 1285-1289
[190.]
J.E. Morley, J.F. Flood.
Evidence that nitric oxide modulates food intake in mice.
Life Sci, 49 (1991), pp. 707-711
[191.]
G. Calapai, F. Corica, A. Allegra, A. Corsonello, L. Sautebin, T. De Gregorio, et al.
Effects of intracerebrovenricular leptin administration on food intake, body weight gain and diencephalic nitric oxide synthase activity in the mouse.
Br J Pharmacol, 125 (1998), pp. 798-802
[192.]
R.H. Lustig, S. Sen, J.E. Soberman, P.A. Velásquez-Mieyer.
Obesity, leptin resistance, and the effects of insulin reduction.
Int J Obes Relat Metab Disord, 28 (2004), pp. 1344-1348
[193.]
C. Verdich, S. Toubro, B. Buemann, J.L. Madsen, J.J. Holst, A. Astrup.
The role of postprandial releases of insulin and incretin hormones in meal-induced satiety-effect of obesity and weight reduction.
Int J Obes, 25 (2001), pp. 1206-1214
[194.]
R.J. Lieverse, A.A. Masclee, J.B. Jansen, C.B. Lamers.
Plasma cholecystokinin and pancreatic polypeptide secretion in response to bombesin, meal ingestion and modified sham feeding in lean and obese persons.
Int J Obes Relat Metab Disord, 18 (1994), pp. 123-127
[195.]
T. Shiiya, M. Nakazato, M. Mizuta, Y. Date, M.S. Mondal, M. Tanaka, et al.
Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion.
J Clin Endocrinol Metab, 87 (2002), pp. 240-244
[196.]
P.J. English, M.A. Ghatei, I.A. Malik, S.R. Bloom, J.P. Wilding.
Food fails to suppress ghrelin levels in obese humans.
J Clin Endocrinol Metab, 87 (2002), pp. 2984
[197.]
L. Soriano-Guillén, V. Barrios, A. Campos-Barros, J. Argente.
Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation.
J Pediatr, 144 (2004), pp. 36-42
[198.]
D.E. Cummings, K. Clement, J.Q. Purnell, C. Vaisse, K.E. Foster, R.S. Frayo, et al.
Elevated plasma ghrelin levels in Prader Willi syndrome.
Nat Med, 8 (2002), pp. 643-644
[199.]
A.M. Haqq, D.D. Stadler, R.G. Rosenfeld, K.L. Pratt, D.S. Weigle, R.S. Frayo, et al.
Circulating ghrelin levels are suppressed by meals and octreotide therapy in children with Prader-Willi syndrome.
J Clin Endocrinol Metab, 88 (2003), pp. 3573-3576
[200.]
R.H. Lustig, P.S. Hinds, K. Ringwall-Smith, R.K. Christensen, S.C. Kaste, R.E. Schreiber, et al.
Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial.
J Clin Endocrinol Metab, 88 (2003), pp. 2586-2592
[201.]
R.L. Batterham, M.A. Cohen, S.M. Ellis, C.W. Le Roux, D.J. Withers, G.S. Frost, et al.
Inhibition of food intake in obese subjects by peptide YY 3-36.
N Engl J Med, 349 (2003), pp. 941-948
[202.]
J. Korner, L.J. Aronne.
The emerging science of body weight regulation and its impact on obesity treatment.
J Clin Invest, 111 (2003), pp. 565-570
[203.]
R.J. Lieverse, A.A. Masclee, J.B. Jansen, W.F. Lam, C.B. Lamers.
Obese women are less sensitive for the satiety effects of bombesin than lean women.
Eur J Clin Nutr, 52 (1998), pp. 207-212
[204.]
N. Hoggard, A.M. Johnstone, P. Faber, E.R. Gibney, M. Elia, G.R. Lobley, et al.
Plasma concentrations of alpha-MSH, AgRP and leptin in lean and obese men and their relationship to differing states of energy balance perturbation.
Clin Endocrinol (Oxf), 61 (2004), pp. 31-39
[205.]
A. Katsuki, Y. Sumida, E.Z. Gabazza, S. Murashima, T. Tanaka, M. Furuta, et al.
Plasma levels of agouti-related protein are increased in obese men.
J Clin Endocrinol Metab, 86 (2001), pp. 1921-1924
[206.]
V. Tolle, M. Kadem, M.T. Bluet-Pajot, D. Frere, C. Foulon, C. Bossu, et al.
Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women.
J Clin Endocrinol Metab, 88 (2003), pp. 109-116
[207.]
F. Broglio, L. Gianotti, S. Destefanis, S. Fassino, G.A. Dagga, V. Mondelli, et al.
The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state.
Clin Endocrinol, 60 (2004), pp. 592-599
[208.]
M. Tanaka, T. Nakahara, S. Kojima, T. Nakano, T. Muranaga, N. Nagai, et al.
Effect of nutritional rehabilitation on circulating ghrelin and growth hormone levels in patients with anorexia nervosa.
Regul Pept, 122 (2004), pp. 163-168
[209.]
Y. Nakai, H. Hosoda, K. Nin, C. Ooya, H. Hayashi, T. Akamizu, et al.
Plasma levels of active form of ghrelin during oral glucose tolerance test in patients with anorexia nervosa.
Eur J Endocrinol, 149 (2003), pp. R1-3
[210.]
J. Nedvidkova, I. Krykorkova, V. Bartak, H. Papezova, P.W. Gold, S. Alesci, et al.
Loss of meal-induced decrease in plasma ghrelin levels in patients with anorexia nervosa.
J Clin Endocrinol Metab, 88 (2003), pp. 1678-1682
[211.]
M. Misra, K.K. Miller, D.B. Herzog, K. Ramaswamy, A.A. Aggarwal, C. Almazan, et al.
Growth hormone and ghrelin responses to an oral glucose load in adolescent girls with anorexia nervosa and controls.
J Clin Endocrinol Metab, 89 (2004), pp. 1605-1612
[212.]
M. Hotta, R. Ohwada, H. Katakami, T. Shibasaki, N. Hizuka, K. Takkano.
Plasma levels of intact and degraded ghrelin and their responses to glucose infusion in anorexia nervosa.
J Clin Endocrinol Metab, 89 (2004), pp. 5707-5712
[213.]
H. Tamai, J. Takemura, N. Kobayashi, S. Matsubayashi, S. Matsukura, T. Nakagawa.
Changes in plasma cholecystokinin concentrations after oral glucose tolerance test in anorexia nervosa before and after therapy.
Metabolism, 42 (1993), pp. 581-584
[214.]
K. Sturm, C.G. MacIntosh, B.A. Parker, J. Wishart, M. Horowitz, I. Chapman.
Appetite, food intake and plasma concentrations of cholecystokinin, ghrelin and other gastrointestinal hormones in undernourished older women and well-nourished young and older women.
J Clin Endocrinol Metab, 88 (2003), pp. 3747-3755
[215.]
D.C. Jimerson, B.E. Wolfe, E.D. Metzger, D.M. Finkelstein, T.B. Cooper, J.M. Levine.
Decreased serotonin function in bulimia nervosa.
Arch Gen Psychiat, 54 (1997), pp. 529-534
[216.]
B. Baranowska, E. Wolinska-Witort, E. Wasilewska-Dziubinska, K. Rouguski, M. Chmielowska.
Plasma leptin, neuropeptide Y (NPY) and galanin concentrations in bulimia nervosa and in anorexia nervosa.
Neuroendocrinol Lett, 22 (2000), pp. 356-358
[217.]
M. Tanaka, T. Naruo, T. Muranaga, D. Yasuhara, T. Shiiya, M. Nakazato, et al.
Increased fasting plasma ghrelin levels in patients with bulimia nervosa.
Eur J Endocrinol, 146 (2002), pp. R1-3
[218.]
K.A. Gendall, W.H. Kaye, M. Altemus, C.W. Conaha, M.C. La Via.
Leptin, neuropeptide Y and peptide YY in long-term recovered eating disorder patients.
Biol Psychiatry, 46 (1999), pp. 292-299
[219.]
A. Inui.
Cancer anorexia-cachexia syndrome: are neuropeptides the key?.
Cancer Res, 59 (1999), pp. 4493-4501
[220.]
S.J. Hopkins, N.J. Rothwell.
Cytokines and the nervous system: expression and recognition.
Trends Neurosci, 18 (1995), pp. 83-88
[221.]
Y. Noguchi, T. Yoshikawa, A. Matsumoto, G. Svaninger, J. Gelin.
Are cytokines possible mediators of cancer cachexia?.
Surg Today, 26 (1996), pp. 467-475
[222.]
P. Matthys, A. Billiau.
Cytokines and cachexia.
Nutrition, 13 (1997), pp. 763-770
[223.]
N. Ghilardi, S. Ziegler, A. Wiestner, R. Stoffel, M.H. Heim, R.C. Skoda.
Defective STAT signaling by the leptin receptor in diabetic mice.
Proc Natl Acad Sci USA, 93 (1996), pp. 6231-6235
[224.]
D. Gayle, S.E. Ilyin, C.R. Plata-Salaman.
Central nervous system IL-1 beta system and neuropeptide Y mRNAs during IL-1beta-induced anorexia in rats.
Brain Res Bull, 44 (1997), pp. 311-317
[225.]
B. Xu, P.S. Kalra, L.L. Moldawer, S.P. Kalra.
Increased appetite augments hypothalamic NPY Y1 receptor gene expression: effects of anorexigenic ciliary neurotropic factor.
Regul Pept, 75 (1998), pp. 391-395
[226.]
C. Tsigos, D.A. Papanicolau, I. Kyrou, R. Defensor, C.S. Mitsiadis, G.P. Chrousos.
Dose-dependent effects of recombinant human interleukin-6 on glucose regulation.
J Clin Endocrinol Metab, 82 (1997), pp. 4167-4170
[227.]
J.M. Daun, D.O. McCarthy.
The role of cholecystokinin in interleukin-induced anorexia.
Physiol Behav, 54 (1993), pp. 237-241
[228.]
M.K. Hellerstein, S.N. Meydani, M. Meydani, K. Wu, C.A. Dinarello.
Interleukin-induced anorexia in the rat.
J Clin Invest, 84 (1989), pp. 228-235
[229.]
D.H. Bessesen, R. Faggioni.
Recently identified peptides involved in the regulation of body weight.
Semin Oncol, 25 (1998), pp. 28-32
[230.]
E.C. Mun, G.L. Blackburn, J.B. Matthews.
Current estado of medical and surgical therapy for obesity.
Gastroenterology, 120 (2001), pp. 669-681
[231.]
G. Frühbeck, A. Díez-Caballero, M.J. Gil, I. Montero, J. Gómez-Ambrosi, J. Salvador, et al.
The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus.
Obes Surg, 14 (2004), pp. 606-612
[232.]
G. Frühbeck, F. Rotellar, J.L. Hernández-Lizoain, M.J. Gil, J. Gomez-Ambrosi, J. Salvador, et al.
Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia.
Obes Surg, 14 (2004), pp. 1208-1215
[233.]
G. Frühbeck, A. Díez-Caballero, M.J. Gil.
Fundus functionality and ghrelin concentrations after bariatric surgery.
N Engl J Med, 350 (2004), pp. 308-309
[234.]
G.F. Adami, R. Cordera, G. Andraghetti, G.B. Camerini, G. Marinari, N. Scopinaro.
Changes in serum ghrelin concentration following biliopancreatic diversion for obesity.
Obes Res, 12 (2004), pp. 684-687
[235.]
C.W. Le Roux, S.R. Bloom.
Why do patients lose weight after Roux-en-Y gastric bypass?.
J Clin Endocrinol Metab, 90 (2005), pp. 591-592
[236.]
J. Korner, M. Bessler, L.J. Cirilo, I.M. Conwell, A. Daud, N.L. Restuccia, et al.
Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY and insulin.
J Clin Endocrinol Metab, 90 (2005), pp. 359-365
[237.]
E. Naslund, P. Gryback, P.M. Hellstrom, H. Jacobsson, J.J. Holst, E. Theodorsson, et al.
Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity.
Int J Obes Relat Metab Disord, 21 (1997), pp. 387-392
[238.]
R. Lugari, A. Dei Cas, D. Ugolotti, A.L. Barilli, C. Camellini, G.C. Ganzerla, et al.
Glucagon-like peptide 1 (GLP-1) secretion and plasma dipeptidyl peptidase IV (DPP-IV) activity in morbidly obese patients undergoing biliopancreeatic diversion.
Horm Metab Res, 36 (2004), pp. 111-115
[239.]
M. Álvarez Bartolomé, M. Borque, J. Martínez-Sarmiento, E. Aparicio, C. Hernández, L. Cabrerizo, et al.
Peptide YY secretion in morbidly obese patients before and after vertical banded gastroplasty.
Obes Surg, 12 (2002), pp. 324-327
[240.]
D.E. Cummings, D.S. Weigle, R.S. Frayo, P.A. Breen, M.K. Ma, E.P. Dellinger, et al.
Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.
N Engl J Med, 346 (2002), pp. 1623-1630
[241.]
M. Faraj, P.J. Havel, S. Phelis, D. Blank, A.D. Sniderman, K. Cianflone.
Plasma acylation-stimulated protein, adiponectin, leptin and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects.
J Clin Endocrinol Metab, 88 (2003), pp. 1594-1602
[242.]
F. Leonetti, G. Silecchia, G. Iacobellis, M.C. Ribaudo, A. Zappaterreno, C. Tiberti, et al.
Different plasma ghrelin levels after laparoscopic gastric bypass and adjustable gastric banding in morbid obese subjects.
J Clin Endocrinol Metab, 88 (2003), pp. 4227-4231
[243.]
R. Stoeckli, R. Chanda, I. Langer, U. Keller.
Changes of body weight and ghrelin plasma levels after gastric banding and gastric bypass.
Obes Res, 12 (2004), pp. 346-350
[244.]
B. Geloneze, M.A. Tambascia, V.F. Pilla, S.R. Geloneze, E.M. Repetto, J.C. Pareja.
Ghrelin, a gut brain hormone: effect of gastric bypass surgery.
Obes Surg, 13 (2003), pp. 17-22
[245.]
N.A. Tritos, E. Mun, A. Bertkau, R. Grayson, E. Maratos-Flier, A. Goldfine.
Serum ghrelin levels in response to glucose load in obese subjects post-gastric bypass surgery.
Obes Res, 11 (2003), pp. 919-924
[246.]
C. Holdstock, B.E. Engstrom, M. Ohrvall, L. Lind, M. Sundbom, F.A. Karlsson.
Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans.
J Clin Endocrinol Metab, 88 (2003), pp. 3177-3183
[247.]
S. Meryn, D. Stein, E.W. Straus.
Pancreatic polypeptide, pancreatic glucagon and enteroglucagon in morbid obesity and following gastric bypass operation.
Int J Obes, 10 (1986), pp. 37-42
[248.]
R.H. Clements, Q.H. González, C.I. Long, G. Wittert, H.L. Laws.
Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type II diabetes mellitus.
Am Surg, 70 (2004), pp. 1-5
[249.]
D.L. Sarson, N. Scopinaro, S.R. Bloom.
Gut hormone changes after jejunoileal (JIB) or biliopancreatic (BPB) bypass surgery for morbid obesity.
Int J Obes, 5 (1981), pp. 471-480
[250.]
L. Ockander, J.L. Hedenbro, J.F. Rehfeld, K. Sjolund.
Jejunoileal bypass changes the duodenal cholecystokinin and somatostatin cell density.
Obes Surg, 13 (2003), pp. 584-590
[251.]
F. Rubino, M. Gagner, P. Gentileschi, S. Kini, S. Fukuyama, J. Feng, et al.
The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism.
Ann Surg, 240 (2004), pp. 236-242
[252.]
S. Aylwin.
Gastrointestinal surgery and gut hormones.
Curr Opin Endocrinol Diab, 12 (2005), pp. 89-98
[253.]
K. Spiegel, R. Leproult, E. Van Cauter.
Impact of sleep debt on metabolic and endocrine function.
Lancet, 354 (1999), pp. 1435-1439
[254.]
R.D. Vorona, M.P. Winn, T.W. Babineau, B.P. Eng, H.R. Feldman, J.C. Ware.
Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index.
Arch Intern Med, 165 (2005), pp. 25-30
[255.]
J. Bass, F.W. Turek.
Sleepless in America.
Arch Intern Med, 165 (2005), pp. 15-16
[256]
National Sleep Foundation. The 2004 NSF National Sleep in America Poll. Disponible en: http://www.sleepfoundation.org
[257.]
K. Spiegel, E. Tasali, P. Penev, E. Van Cauter.
Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels and increased hunger and appetite.
Ann Intern Med, 141 (2004), pp. 846-850
[258.]
S. Taheri, L. Lin, D. Austin, T. Young, E. Mignot.
Short sleep duration is associated with reduced leptin, elevated ghrelin and increased body mass index.
Plos Med, 1 (2004), pp. 1-8
[259.]
I.A. Harsch, P.C. Konturek, C. Koebnick, P.P. Kuehnlein, F.S. Fuchs, et al.
Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment.
Eur Respir J, 22 (2003), pp. 251-257
[260.]
F. Obal Jr, J. Alt, P. Taishi, J. Gardi, J.M. Krueger.
Sleep in mice with non-functional growth hormone-releasing hormone receptors.
Am J Physiol Regul Integr Comp Physiol, 284 (2003), pp. R131-R139
[261.]
C.M. Sinton, T.E. Fitch, H.K. Gershenfeld.
The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation.
J Sleep Res, 8 (1999), pp. 197-203
[262.]
J.C. Weikel, A. Wichniak, M. Ising, H. Brunner, E. Fries, K. Held, et al.
Ghrelin promotes slow-wave sleep in humans.
Am J Physiol Endocrinol Metab, 284 (2003), pp. E407-E415
[263.]
J.S. Flier, J.K. Elmquist.
A good night's sleep: future antidote to the obesity epidemic.
Ann Intern Med, 141 (2004), pp. 885-886
[264.]
M.P. Curran, L.J. Scott.
Orlistat: a review of its use in the management of patients with obesity.
Drugs, 64 (2004), pp. 2845-2864
[265.]
D.E. Arterburn, P.K. Crane, D.L. Veenstra.
The efficacy and safety of sibutramine for weight loss: a systematic review.
Arch Intern Med, 164 (2004), pp. 994-1003
[266.]
I.S. Farooqi, S.A. Jebb, G. Langmack, E. Lawrence, C.H. Cheetham, A.M. Prentice, et al.
Effects of recombinant leptin therapy in a child with congenital leptin deficiency.
N Engl J Med, 341 (1999), pp. 879-884
[267.]
J. Licinio, S. Caglayan, M. Ozata, B.O. Yildiz, P.B. De Miranda, F. O’Kirwan, et al.
Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults.
Proc Natl Acad Sci USA, 101 (2004), pp. 4531-4536
[268.]
E.A. Oral, V. Simha, E. Ruiz, A. Andewelt, A. Premkumar, P. Snell, et al.
Leptin-replacement therapy for lipodystrophy.
N Engl J Med, 346 (2002), pp. 570-578
[269.]
S.B. Heymsfield, A.S. Greenberg, K. Fujioka, R.M. Dixon, R. Kushner, T. Hunt, et al.
Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial.
JAMA, 282 (1999), pp. 1568-1575
[270.]
J. Salvador, J. Gómez-Ambrosi, G. Frühbeck.
Perspectives in the therapeutic use of leptin.
Expert Opin Pharmacother, 2 (2001), pp. 1615-1622
[271.]
B. Xu, M.G. Dube, P.S. Kalra, W.G. Farmerie, A. Kaibara, L.L. Moldawer, et al.
Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin.
Endocrinology, 139 (1998), pp. 466-473
[272.]
P.D. Lambert, K.D. Anderson, M.W. Sleeman, V. Wong, J. Tan, A. Hijarunguru, et al.
Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity.
Proc Natl Acad Sci USA, 98 (2001), pp. 4652-4657
[273.]
N. Panayotatos, E. Radziejewska, A. Acheson, D. Pearsall, A. Thadani, V. Wong.
Exchange of a single amino acid interconverts the specific activity and gel mobility of human and rat ciliary neurotrophic factors.
J Biol Chem, 268 (1993), pp. 19000-19003
[274.]
M.P. Ettinger, T.W. Littlejohn, S.L. Schwartz, S.R. Weiss, H.H. McIlwain, S.B. Heymsfield, et al.
Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study.
JAMA, 289 (2003), pp. 1826-1832
[275.]
B.J. Goldstein.
Protein-tyrosine phosphatase 1B (PTP1B): a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance.
Curr Drug Targets Immune Endocr Metabol Disord, 3 (2001), pp. 265-275
[276.]
J.W. Anderson, F.L. Greenway, K. Fujioka, K.M. Gadde, J. McKenney, P.M. O’Neil.
Bupropion SR enhances weight loss: a 48-weeek double-blind, placebo- controlled trial.
Obes Res, 10 (2002), pp. 633-641
[277.]
S.F. Vickers, C.T. Dourish.
Serotonin receptor ligands and the treatment of obesity.
Curr Opin Investig Drugs, 5 (2004), pp. 377-388
[278.]
S. Taverna, G. Sancini, M. Mantegazza, S. Franceschetti, G. Avanzini.
Inhibition of transient and persistent Na current fractions by the new anticonvulsivant topiramate.
J Pharmacol Exp Ther, 288 (1999), pp. 960-968
[279.]
J.W. Gibbs, S. Sombati, R.J. De Lorenzo, D.A. Coulter.
Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons.
Epilepsia, 41 (2000), pp. S10-S16
[280.]
D.A. York, L. Singer, S. Thomas, G.A. Bray.
Effect of topiramate on body weight and body composition of Osborne-Mendel rats fed a high-fat diet: alterations in hormones, neuropeptide, and uncoupling-protein mRNAs.
Nutrition, 16 (2000), pp. 967-975
[281.]
A. Astrup, I. Caterson, P. Zelissen, B. Guy-Grand, M. Carruba, B. Levy, et al.
Topiramate: long-term maintenance of weight loss induced by a low-calorie diet in obese subjects.
Obes Res, 12 (2004), pp. 1658-1669
[282.]
G.A. Bray, P. Hollander, S. Klein, R. Kushner, B. Levy, M. Fitchet, et al.
A 6-month randomized, placebo-controlled, doseranging trial of topiramate fo weight loss in obesity.
Obes Res, 11 (2003), pp. 722-733
[283.]
J. Wilding, L. Van Gaal, A. Rissanen, F. Vercruysse, M. Fitchet.
A randomized double-blind placebo-controlled study of the long-term efficay and safety of topiramate in the treatment of obese subjects.
Int J Obes, 28 (2004), pp. 1399-1410
[284.]
S.L. McElroy, L.M. Arnold, N.A. Shapira, P.E. Keck Jr, N.R. Rosenthal, M.R. Karim, et al.
Topiramate in the treatment of binge eating disorder associated with obesity: a randomized, placebo-controlled trial.
Am J Psychiatry, 160 (2003), pp. 255-261
[285.]
J.W. Winkelman.
Treatment of nocturnal eating syndrome and sleep-related eating disorder with topiramate.
Sleep Med, 4 (2003), pp. 243-246
[286.]
S.A. Smathers, J.G. Wilson, M.A. Nigro.
Topiramate effectiveness in Prader-Willi syndrome.
Pediatr Neurol, 28 (2003), pp. 130-133
[287.]
K.M. Gadde, D.M. Fraciscy, H.R. Wagner II, K.R.R. Krishnan.
Zonisamide for weight loss in obese adults. A randomized controlled trial.
JAMA, 289 (2003), pp. 1820-1825
[288.]
B. Poirier, J.P. Bidouard, C. Cadrouvele, X. Marniquet, B. Staels, S.E. O’Connor, et al.
The anti-obesity effect of rimonabant is associated with an improved serum lipid profile.
Diab Obes Metab, 7 (2005), pp. 65-72
[289.]
S. Chamorro, O. Della-Zuana, J.L. Fauchere, M. Feletou, J.P. Galizzi, N. Levens.
Appetite suppression based on selective inhibition of NPY receptors.
Int J Obes, 26 (2002), pp. 281-298
[290.]
A.V. Turnbull, L. Ellershaw, D.J. Masters, S. Birtles, S. Boyer, D. Carroll, et al.
Selective antagonism of the NPY Y5 receptor does not have a major effect on feeding in rats.
Diabetes, 51 (2002), pp. 2441-2449
[291.]
N.R. Levens, O. Della-Zuana.
Neuropeptide Y Y5 receptor antagonists as anti-obesity drugs.
Curr Opin Investig Drugs, 4 (2003), pp. 1198-1204
[292.]
S. Bluher, M. Ziotopoulou, J.W. Bullen Jr, S.J. Moschos, L. Ungsunan, E. Kokkotou, et al.
Responsiveness to peripherally administered melanocortins in lean and obese mice.
Diabetes, 53 (2004), pp. 82-90
[293.]
T.I. Richardson, P.L. Ornstein, K. Briner, M.J. Fisher, R.T. Backer, C.K. Biggers, et al.
Synthesis and structure-activity relationships of novel arylpiperazines as potent and selective agonists of the melanocortin subtype-4 receptor.
J Med Chem, 47 (2004), pp. 744-755
[294.]
B.E. Wisse, R.S. Frayo, M.W. Schwartz, D.E. Cummings.
Reversal of cancer anorexia by blockade of central melanocortin receptors in rats.
Endocrinology, 142 (2001), pp. 3292-3301
[295.]
J.R. Szewczyk, C. Laudeman.
CCK1R agonists: a promising target for the pharmacological treatment of obesity.
Curr Top Med Chem, 3 (2003), pp. 837-854
[296.]
J. Sturis, C.F. Gotfredsen, J. Romer, B. Rolin, U. Ribel, C.L. Brand, et al.
GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics.
Br J Pharmacol, 140 (2003), pp. 123-132
[297.]
B. Ahren, E. Simonsson, H. Larsson, M. Landin-Olsson, H. Torgeirsson, P.A. Jansson, et al.
Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes.
Diabetes Care, 25 (2002), pp. 869-875
[298.]
E. Naslund, N. King, S. Mansten, N. Adner, J.J. Holst, M. Gutniak, et al.
Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects.
Br J Nutr, 91 (2004), pp. 439-446
[299.]
T. Damci, S. Yalin, H. Balci, Z. Osar, U. Korugan, M. Ozyazar, et al.
Orlistat augments ppostprandial increases in glucagonlike petide 1 in obese typoe 2 diabetic patients.
Diabetes Care, 27 (2004), pp. 1077-1080
[300.]
A. Lee, P. Patrick, J. Wishart, M. Horowitz, J.E. Morley.
The effects of miglitol on glucagon-like peptide-1 secretion and appetite sensations in obese type 2 diabetics.
Diabetes Obes Metab, 4 (2002), pp. 329-335
[301.]
E. Mannucci, A. Ognibene, F. Cremasco, G. Bardini, A. Mencucci, E. Pierazzuoli, et al.
Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects.
Diabetes Care, 24 (2001), pp. 489-494
[302.]
H.A. Halem, J.E. Taylor, J.Z. Dong, Y. Shen, R. Datta, A. Abizaid, et al.
Novel analogs of ghrelin: physiological and clinical implications.
Eur J Endocrinol, 151 (2004), pp. S71-S75
[303.]
A. Asakawa, A. Inui, T. K.aga, G. Katsuura, M. Fujimiya, M.A. Fujino, et al.
Antagonism of ghrelin receptor reduces food intake and body weight gain in mice.
Gut, 52 (2003), pp. 947-952
[304.]
H.A. Halem, J.E. Taylor, J.Z. Dong, Y. Shen, R. Datta, A. Abizaid, et al.
Novel analogs of ghrelin: physiological and clinical implications.
Eur J Endocrinol, 151 (2004), pp. S71-S75
[305.]
P. Hollander, D.G. Maggs, J.A. Ruggles, M. Fineman, L. Shen, O.G. Kolterman, et al.
Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients.
Obes Res, 12 (2004), pp. 661-668
[306.]
C.A. Collins, P.R. Kym.
Prospects for obesity treatment: MCH receptor antagonists.
Curr Opin Invest Drugs, 4 (2003), pp. 386-394
[307.]
H.E. Bays.
Current and investigational antiobesity agents and obesity therapeutic treatment targets.
Obes Res, 12 (2004), pp. 1197-1211
[308.]
K.G. Murphy, C.R. Abbott, S.R. Bloom.
Gut hormones come of age.
Curr Opin Endocrinol Metab, 12 (2005), pp. 53-55

Trabajo financiado por el Fondo de Investigación sanitaria (FIS) del Instituto Carlos III, Red de Grupos (G03/028)

Copyright © 2005. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos