Biomedical devices introduced in the human body interact initially with blood cells, their success being dependent on the result of this interaction. This work aimed to obtain optimum biocompatibility and hemocompatibility of the titanium by plasma treatment. For this, discs of commercially pure titanium (CP) were subjected to plasma nitriding using different mixture of nitrogen and hydrogen; the effect of addition of hydrogen to the nitriding plasma was investigated. Before and after treatment, samples were evaluated in terms of topography and wettability using atomic force microscopy and sessile drop tests, respectively. The titanium biological response was evaluated in vitro through the application of platelet-rich plasma (PRP) on the surfaces modified and analysis of their behaviour from the point of view of surface tension and cell adhesion. Surface properties, such as roughness and wettability, were sensitive to the hydrogen/nitrogen ratio in the nitriding plasma, suggesting a strategy for producing different surfaces of biomedical devices. Results showed to be possible to obtain surfaces with different response to the adhesion of platelets, covering different applications.
SRJ is a prestige metric based on the idea that not all citations are the same. SJR uses a similar algorithm as the Google page rank; it provides a quantitative and qualitative measure of the journal's impact.
See moreSNIP measures contextual citation impact by wighting citations based on the total number of citations in a subject field.
See more

